Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters electrical

Jin, X., Xiao, C., An, S., Wang, Y., 2007b. Preparation and characterization of carbon black coated polyester electrically conductive fiber. J. Text. Res. 28 (5), 9-12. [Pg.48]

Polyesters are also used in continuous filament spunbonded nonwovens (see Nonwoven fabrics). Reemay spunbonded fabric is composed of continuous filament PET with a polyester copolymer binder. These spunbonded fabrics are available in a wide range of thicknesses and basis weights and can be used for electrical insulation, coated fabric substrates, disposable apparel for clean rooms, hospitals, and geotextiles (qv). [Pg.334]

In other areas, POD has been used to improve the wear resistance of a mbber latex binder by incorporation of 25% of Oksalon fibers. Heat-resistant laminate films, made by coating a polyester film with POD, have been used as electrical insulators and show good resistance to abrasion and are capable of 126% elongation. In some instances, thin sheets of PODs have been used as mold release agents. For this appHcation a resin is placed between the two sheets of POD, which is then pressed in a mold, and the sheets simply peel off from the object and mold after the resin has cured. POD-based membranes exhibit salt rejection properties and hence find potential as reverse osmosis membranes in the purification of seawater. PODs have also been used in the manufacturing of electrophotographic plates as binders between the toner and plate. These improved binders produce sharper images than were possible before. [Pg.535]

Other minor raw materials are used for specific needs. Eumaric acid [110-17-8] the geometric isomer of maleic acid, is selected to maximize thermal or corrosion performance and is the sole acid esterified with bisphenol A diol derivatives to obtain optimum polymer performance. CycloaUphatics such as hydrogenated bisphenol A (HBPA) and cyclohexanedimethanol (CHDM) are used in selective formulations for electrical apphcations. TetrahydrophthaUc anhydride [85-43-8] (THPA) can be used to improve resiUence and impart useful air-drying properties to polyester resins intended for coating or lining apphcations. [Pg.313]

Flame-Retardant Resins. Flame-retardant resins are formulated to conform to fire safety specifications developed for constmction as well as marine and electrical appHcations. Resins produced from halogenated intermediates (Table 5) are usually processed at lower temperatures (180°C) to prevent excessive discoloration. Dibromoneopentyl glycol [3296-90-0] (DBNPG) also requires glass-lined equipment due to its corrosive nature. Tetrabromophthahc anhydride (TBPA) and chlorendic anhydride (8) are formulated with ethylene glycols to maximize fiame-retardant properties reaction cycle times are about 12 h. Resins are also produced commercially by the in situ bromination of polyester resins derived from tetrahydrophthahc anhydride... [Pg.317]

Performance Characteristics Polyester resins undergo a rapid transformation from a viscous Hquid to a soHd plastic state that comprises a three-dimensional cross-linked polymer stmcture. The level of polyester polymer unsaturation determines essential performance characteristics (Table 7), although polymer components can influence subtle features that affect thermal, electrical, and mechanical performance as defined by ASTM procedures. [Pg.320]

Some amino resins are used as additives to modify the properties of other materials. For example, a small amount of amino resin added to textile fabric imparts the familiar wash-and-wear quaUties to shirts and dresses. Automobile tires are strengthened by amino resins which improve the adhesion of mbber to tire cord (qv). A racing sailboat may have a better chance to win because the sails of Dacron polyester have been treated with an amino resin (1). Amino resins can improve the strength of paper even when it is wet. Molding compounds based on amino resins are used for parts of electrical devices, botde and jar caps, molded plastic dinnerware, and buttons. [Pg.321]

Unsaturated Polyester Resins (UPR). The principal uses are in putty, coatings, and adhesives. Glass-reinforced UPR is used for marine, constmction, and vehicle materials, as weU as for electrical parts. [Pg.487]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

Synthetic fabrics can also be finished to achieve a number of specific characteristics (199). For example, increased electrical conductivity can improve the antistatic character of polyester. Similarly, finishes that improve hydrophilic character also improve properties related to soil release and soil redeposition (199,200). [Pg.449]

Phenohc resins (qv), once a popular matrix material for composite materials, have in recent years been superseded by polyesters and epoxies. Nevertheless, phenohc resins stiU find considerable use in appHcations where high temperature stabiHty and fire resistance are of paramount importance. Typical examples of the use of phenoHc resins in the marine industry include internal bulkheads, decks, and certain finishings. The curing process involves significant production of water, often resulting in the formation of voids within the volume of the material. Further, the fact that phenoHcs are prone to absorb water in humid or aqueous conditions somewhat limits their widespread appHcation. PhenoHc resins are also used as the adhesive in plywood, and phenohc molding compounds have wide use in household appliances and in the automotive, aerospace, and electrical industries (12). [Pg.7]


See other pages where Polyesters electrical is mentioned: [Pg.15]    [Pg.844]    [Pg.7]    [Pg.7]    [Pg.521]    [Pg.15]    [Pg.844]    [Pg.7]    [Pg.7]    [Pg.521]    [Pg.450]    [Pg.334]    [Pg.377]    [Pg.378]    [Pg.383]    [Pg.373]    [Pg.374]    [Pg.323]    [Pg.69]    [Pg.72]    [Pg.503]    [Pg.299]    [Pg.300]    [Pg.308]    [Pg.321]    [Pg.321]    [Pg.322]    [Pg.361]    [Pg.85]    [Pg.87]    [Pg.163]    [Pg.425]    [Pg.96]    [Pg.292]    [Pg.493]    [Pg.286]    [Pg.295]    [Pg.7]    [Pg.7]    [Pg.333]    [Pg.366]    [Pg.186]    [Pg.422]    [Pg.527]    [Pg.369]   


SEARCH



Electrical grade polyester

Electrical grade polyester mechanical properties

Polyester electrical discharge

Polyester electrical properties

© 2024 chempedia.info