Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonate hydrolysis

Hydrolysis has been the main method used for the chemical recycling of other condensation polymers, such as polyacetals and polycarbonates. Hydrolysis of polyacetals leads back to the starting monomers, formaldehyde or trioxane. Polycarbonates are polymers synthesized by the reaction of phosgene and a dihydric phenol, commonly bisphenol A. Chemical recycling of polycarbonate... [Pg.54]

Hydrolysis is accompanied by both H ions and OH ions in water, i. e., polycarbonate hydrolysis is strongly dependent on pH value. Figure 5.304 left. While long service lives are given at low pH values, lifetime is drastically reduced at higher pH values. Alkaline hydrolysis proceeds considerably faster [93]. [Pg.738]

Phosgene addition is continued until all the phenoHc groups are converted to carbonate functionahties. Some hydrolysis of phosgene to sodium carbonate occurs incidentally. When the reaction is complete, the methylene chloride solution of polymer is washed first with acid to remove residual base and amine, then with water. To complete the process, the aqueous sodium chloride stream can be reclaimed in a chlor-alkah plant, ultimately regenerating phosgene. Many variations of this polycarbonate process have been patented, including use of many different types of catalysts, continuous or semicontinuous processes, methods which rely on formation of bischloroformate oligomers followed by polycondensation, etc. [Pg.283]

Methods for isolation of the product polycarbonate remain trade secrets. Feasible methods for polymer isolation include antisolvent precipitation, removal of solvent in boiling water, spray drying, and melt devolatization using a wiped film evaporator. Regardless of the technique, the polymer must be isolated dry, to avoid hydrolysis, and essentially be devoid of methylene chloride. Most polycarbonate is extmded, at which point stabiUzers and colors may be added, and sold as pellets. [Pg.283]

To enhance the resistance to heat softening his-phenol A is substituted by a stiffer molecule. Conventional bis-phenol A polycarbonates have lower heat distortion temperatures (deflection temperatures under load) than some of the somewhat newer aromatic thermoplastics described in the next chapter, such as the polysulphones. In 1979 a polycarbonate in which the bis-phenol A was replaced by tetramethylbis-phenol A was test marketed. This material had a Vicat softening point of 196 C, excellent resistance to hydrolysis, excellent resistance to tracking and a low density of about l.lg/cm-. Such improvements were obtained at the expense of impact strength and resistance to stress cracking. [Pg.565]

The chemical resistance of polyester materials is well recognised to be limited because of the comparative ease of hydrolysis of the ester groups. Whereas this ease of hydrolysis was also observed in aliphatic polycarbonates produced by... [Pg.571]

Aliphatic polycarbonates have few characteristics which make them potentially valuable materials but study of various aromatic polycarbonates is instructive even if not of immediate commercial significance. Although bisphenol A polycarbonates still show the best all-round properties other carbonic ester polymers have been prepared which are outstandingly good in one or two specific properties. For example, some materials have better heat resistance, some have better resistance to hydrolysis, some have greater solvent resistance whilst others are less permeable to gases. [Pg.580]

The specialty class of polyols includes poly(butadiene) and polycarbonate polyols. The poly(butadiene) polyols most commonly used in urethane adhesives have functionalities from 1.8 to 2.3 and contain the three isomers (x, y and z) shown in Table 2. Newer variants of poly(butadiene) polyols include a 90% 1,2 product, as well as hydrogenated versions, which produce a saturated hydrocarbon chain [28]. Poly(butadiene) polyols have an all-hydrocarbon backbone, producing a relatively low surface energy material, outstanding moisture resistance, and low vapor transmission values. Aromatic polycarbonate polyols are solids at room temperature. Aliphatic polycarbonate polyols are viscous liquids and are used to obtain adhesion to polar substrates, yet these polyols have better hydrolysis properties than do most polyesters. [Pg.770]

As previously mentioned, some urethanes can biodegrade easily by hydrolysis, while others are very resistant to hydrolysis. The purpose of this section is to provide some guidelines to aid the scientist in designing the desired hydrolytic stability of the urethane adhesive. For hydrolysis of a urethane to occur, water must diffuse into the bulk polymer, followed by hydrolysis of the weak link within the urethane adhesive. The two most common sites of attack are the urethane soft segment (polyol) and/or the urethane linkages. Urethanes made from PPG polyols, PTMEG, and poly(butadiene) polyols all have a backbone inherently resistant to hydrolysis. They are usually the first choice for adhesives that will be exposed to moisture. Polyester polyols and polycarbonates may be prone to hydrolytic attack, but this problem can be controlled to some degree by the proper choice of polyol. [Pg.806]

Hydrolysis studies compared a polycarbonate urethane with a poly(tetramethyl-ene adipate) urethane and a polyether urethane based on PTMEG. After 2 weeks in 80°C water, the polycarbonate urethane had the best retention of tensile properties [92], Polycarbonates can hydrolyze, although the mechanism of hydrolysis is not acid-catalyzed, as in the case of the polyesters. Polycarbonate polyurethanes have better hydrolysis resistance than do standard adipate polyurethanes, by virtue of the highest retention of tensile properties. It is interesting to note in the study that the PTMEG-based urethanes, renowned for excellent hydrolysis resistance, had lower retention of physical properties than did the polycarbonate urethanes. [Pg.808]

It is speculated that the water does not diffuse as easily into the polycarbonate as into the PTMEG urethane, making the polycarbonate more resistant to plasticization by water and subsequent hydrolysis. The tensile properties of the PTMEG polyurethane eventually returned to nearly the original tensile properties, if the material was allowed to dry at room temperature for 2 weeks. This observation lends credence to the idea that the PTMEG urethane was plasticized by water. [Pg.808]

The selective degradation of the preformed polymer component (polycarbonate/polystyrene) of graft copolymers by two phase alkaline hydrolysis provides a clean system for quantitative recovery and subsequent characterization of the graft [151]. [Pg.497]

Polybutadienes, polycaprolactones, polycarbonates, and amine-terminated polyethers (ATPEs) are shown in Scheme 4.4 as examples of other commercially available polyols. They are all specialty materials, used in situations where specific property profiles are required. For example, ATPEs are utilized in spray-applied elastomers where fast-reacting, high-molecular-weight polyamines give quick gel times and rapid viscosity buildup. Polycarbonates are used for implantation devices because polyuredtanes based on them perform best in this very demanding environment. Polycaprolactones and polybutadienes may be chosen for applications which require exceptional light stability, hydrolysis resistance, and/or low-temperature flexibility. [Pg.213]

Lipase is an enzyme which catalyzes the hydrolysis of fatty acid esters normally in an aqueous environment in living systems. However, hpases are sometimes stable in organic solvents and can be used as catalyst for esterifications and transesterifications. By utihzing such catalytic specificities of lipase, functional aliphatic polyesters have been synthesized by various polymerization modes. Typical reaction types of hpase-catalyzed polymerization leading to polyesters are summarized in Scheme 1. Lipase-catalyzed polymerizations also produced polycarbonates and polyphosphates. [Pg.207]

While additive analysis of polyamides is usually carried out by dissolution in HFIP and hydrolysis in 6N HC1, polyphthalamides (PPAs) are quite insoluble in many solvents and very resistant to hydrolysis. The highly thermally stable PPAs can be adequately hydrolysed by means of high pressure microwave acid digestion (at 140-180 °C) in 10 mL Teflon vessels. This procedure allows simultaneous analysis of polymer composition and additives [643]. Also the polymer, oligomer and additive composition of polycarbonates can be examined after hydrolysis. However, it is necessary to optimise the reaction conditions in order to avoid degradation of bisphenol A. In the procedures for the analysis of dialkyltin stabilisers in PVC, described by Udris [644], in some instances the methods can be put on a quantitative basis, e.g. the GC determination of alcohols produced by hydrolysis of ester groups. [Pg.154]

Owing to their improved stability towards hydrolysis and oxidation, dimer diol polyethers (and dimer diol polycarbonates) are used as soft segments in the preparation of thermoplastic polyurethanes. Polyurethanes prepared from such oleo-chemical building blocks are very hydrophobic and show the expected stability. [Pg.82]

Polycarbonates are handicapped by their sensitivities to light and hydrolysis, requiring efficient protection for outdoor exposure fire behaviour, except for FR grades sensitivity to environmental stress cracking and attacks by chemicals such as bases, oils, chlorinated solvents, ketones. The cost, which is justified by the performances, is higher than that of PMMA and, of course, the commodities. [Pg.438]

While polycarbonate has the desirable qualities as the basic material for information storage, it also has some debits. First, polycarbonate is relatively expensive in comparison with many polymers. Its superior combination of properties and ability for a large cost markup allows it to be an economically feasible material for specific commercial uses. Second, the polar backbone is susceptible to long-term hydrolysis so that water must be ruthlessly purged. The drying process, generally 4 h, is often achieved by placement of polycarbonate chips in an oven at 120°C with a dew point of — 18°C. [Pg.101]

Liu Y, Huang K, Peng D, Wu H (2006) Synthesis, characterization and hydrolysis of an aliphatic polycarbonate by terpolymerization of carbon dioxide, propylene oxide and maleic anhydride. Polymer 47(26) 8453-8461... [Pg.46]

Enzymes that belong to the class of hydrolases are by far the most frequently-applied enzymes in polymer chemistry and are discussed in Chaps. 3-6. Although hydrolases typically catalyse hydrolysis reactions, in synthetic conditions they have also been used as catalysts for the reverse reaction, i.e. the bond-forming reaction. In particular, lipases emerged as stable and versatile catalysts in water-poor media and have been applied to prepare polyesters, polyamides and polycarbonates, all polymers with great potential in a variety of biomedical applications. [Pg.158]

E. Wenz, T. Eckel, O. Meincke, H. Warth, and H. Eichenauer, Polycarbonate molding compositions with improved hydrolysis resis-... [Pg.257]


See other pages where Polycarbonate hydrolysis is mentioned: [Pg.92]    [Pg.279]    [Pg.280]    [Pg.281]    [Pg.283]    [Pg.421]    [Pg.467]    [Pg.41]    [Pg.207]    [Pg.11]    [Pg.121]    [Pg.416]    [Pg.188]    [Pg.445]    [Pg.455]    [Pg.54]    [Pg.118]    [Pg.97]    [Pg.161]    [Pg.618]    [Pg.45]    [Pg.279]    [Pg.280]    [Pg.281]   
See also in sourсe #XX -- [ Pg.299 ]




SEARCH



Hydrolysis of Polyesters and Polycarbonates

Polycarbonate hydrolysis, resistance

Polycarbonates, hydrolysis

Polycarbonates, hydrolysis

© 2024 chempedia.info