Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor transmission

The high fluorine content contributes to resistance to attack by essentially all chemicals and oxidizing agents however, PCTFE does swell slightly ia halogenated compounds, ethers, esters, and selected aromatic solvents. Specific solvents should be tested. PCTFE has the lowest water-vapor transmission rate of any plastic (14,15), is impermeable to gases (see also Barrierpolymers), and does not carbonize or support combustion. [Pg.393]

Hard sugar candies have very low moisture content. They are sealed in low water vapor-transmission packaging such as aluminum foil or oriented polypropylene film. [Pg.449]

Poly(vinyl chloride). To be converted into film, poly(viayl chloride) [9002-86-22] (PVC) must be modified with heat stabilizers and plasticizers, which increase costs. Plasticized PVC film is highly transparent and soft, with a very high gas-permeation rate. Water-vapor transmission rate is relatively low. At present, PVC film is produced by blown-film extmsion, although casting and calendering are employed for heavier gauges (see Vinyl POLYAffiRS). [Pg.452]

Films or membranes of silkworm silk have been produced by air-drying aqueous solutions prepared from the concentrated salts, followed by dialysis (11,28). The films, which are water soluble, generally contain silk in the silk I conformation with a significant content of random coil. Many different treatments have been used to modify these films to decrease their water solubiUty by converting silk I to silk II in a process found usehil for enzyme entrapment (28). Silk membranes have also been cast from fibroin solutions and characterized for permeation properties. Oxygen and water vapor transmission rates were dependent on the exposure conditions to methanol to faciUtate the conversion to silk II (29). Thin monolayer films have been formed from solubilized silkworm silk using Langmuir techniques to faciUtate stmctural characterization of the protein (30). ResolubiLized silkworm cocoon silk has been spun into fibers (31), as have recombinant silkworm silks (32). [Pg.78]

A more polar comonomer, eg, an AN comonomer, increases the water-vapor transmission more than VC when other factors are constant. For the same reason, AN copolymers are more resistant to penetrants of low cohesive energy density. AH VDC copolymers, however, are very impermeable to ahphatic hydrocarbons. Comonomers that lower T and increase the free volume in the amorphous phase increase permeability more than the polar comonomers higher acrylates are an example. Plasticizers increase permeabiUty for similar reasons. [Pg.435]

The effect of plasticizers and temperature on the permeabiUty of small molecules in a typical vinyUdene chloride copolymer has been studied thoroughly. The oxygen permeabiUty doubles with the addition of about 1.7 parts per hundred resin (phr) of common plasticizers, or a temperature increase of 8°C (91). The effects of temperature and plasticizer on the permeabiUty are shown in Figure 4. The moisture (water) vapor transmission rate (MVTR or WVTR) doubles with the addition of about 3.5 phr of common plasticizers (92). The dependence of the WVTR on temperature is a Htde more comphcated. WVTR is commonly reported at a constant difference in relative humidity and not at a constant partial pressure difference. WVTR is a mixed term that increases with increasing temperature because both the fundamental permeabiUty and the fundamental partial pressure at constant relative humidity increase. Carbon dioxide permeabiUty doubles with the addition of about 1.8 phr of common plasticizers, or a temperature increase of 7°C (93). [Pg.435]

The water-vapor transmission rate (WVTR) is another descriptor of barrier polymers. Strictly, it is not a permeabihty coefficient. The dimensions are quantity times thickness in the numerator and area times a time interval in the denominator. These dimensions do not have a pressure dimension in the denominator as does the permeabihty. Common commercial units for WVTR are (gmil)/(100 in. d). Table 2 contains conversion factors for several common units for WVTR. This text uses the preferred nmol/(m-s). The WVTR describes the rate that water molecules move through a film when one side has a humid environment and the other side is dry. The WVTR is a strong function of temperature because both the water content of the air and the permeabihty are direcdy related to temperature. Eor the WVTR to be useful, the water-vapor pressure difference for the value must be reported. Both these facts are recognized by specifying the relative humidity and temperature for the WVTR value. This enables the user to calculate the water-vapor pressure difference. Eor example, the common conditions are 90% relative humidity (rh) at 37.8°C, which means the pressure difference is 5.89 kPa (44 mm Hg). [Pg.487]

Table 2. Water Vapor Transmission Rate Units with Conversion Factors... Table 2. Water Vapor Transmission Rate Units with Conversion Factors...
Table 9. Water-vapor Transmission Rates of Selected Polymers ... Table 9. Water-vapor Transmission Rates of Selected Polymers ...
Water Transport. Two methods of measuring water-vapor transmission rates (WVTR) ate commonly used. The newer method uses a Permatran-W (Modem Controls, Inc.). In this method a film sample is clamped over a saturated salt solution, which generates the desired humidity. Dry air sweeps past the other side of the film and past an infrared detector, which measures the water concentration in the gas. For a caUbrated flow rate of air, the rate of water addition can be calculated from the observed concentration in the sweep gas. From the steady-state rate, the WVTR can be calculated. In principle, the diffusion coefficient could be deterrnined by the method outlined in the previous section. However, only the steady-state region of the response is serviceable. Many different salt solutions can be used to make measurements at selected humidity differences however, in practice,... [Pg.500]

MethylceUulose reduces surface and interfacial tension. MethylceUulose forms high strength films and sheets that are clear, water-soluble, and oU-and grease-resistant, and have low oxygen and moisture vapor transmission rates (see Barrier polymers). [Pg.489]

Finishes for systems operating below 2°C (3.5°F) must be sealed and retard vapor transmission. Those from 2°C (35°F) through 27°C (80°F) should retard vapor transmission (to prevent surface condensation), and those above 27°C (80°F) should prevent water entry and allow moisture to escape. [Pg.1098]

They can be breathable with high moisture vapor transmission. [Pg.486]

The specialty class of polyols includes poly(butadiene) and polycarbonate polyols. The poly(butadiene) polyols most commonly used in urethane adhesives have functionalities from 1.8 to 2.3 and contain the three isomers (x, y and z) shown in Table 2. Newer variants of poly(butadiene) polyols include a 90% 1,2 product, as well as hydrogenated versions, which produce a saturated hydrocarbon chain [28]. Poly(butadiene) polyols have an all-hydrocarbon backbone, producing a relatively low surface energy material, outstanding moisture resistance, and low vapor transmission values. Aromatic polycarbonate polyols are solids at room temperature. Aliphatic polycarbonate polyols are viscous liquids and are used to obtain adhesion to polar substrates, yet these polyols have better hydrolysis properties than do most polyesters. [Pg.770]

TMA Tooling Manufacturing Assoc. WVT water vapor transmission... [Pg.655]


See other pages where Vapor transmission is mentioned: [Pg.434]    [Pg.373]    [Pg.381]    [Pg.381]    [Pg.449]    [Pg.421]    [Pg.421]    [Pg.427]    [Pg.320]    [Pg.458]    [Pg.313]    [Pg.315]    [Pg.436]    [Pg.442]    [Pg.442]    [Pg.442]    [Pg.443]    [Pg.311]    [Pg.311]    [Pg.486]    [Pg.527]    [Pg.277]    [Pg.365]    [Pg.365]    [Pg.366]    [Pg.509]    [Pg.526]    [Pg.152]    [Pg.1338]    [Pg.306]    [Pg.652]    [Pg.655]    [Pg.687]    [Pg.244]    [Pg.183]   
See also in sourсe #XX -- [ Pg.207 , Pg.238 , Pg.241 ]




SEARCH



Barrier properties water vapor transmission rate

Chitosan water vapor transmission rate

Diffusion measurement water vapor transmission through

MVTRs (moisture-vapor transmission

Moisture vapor transmission

Moisture vapor transmission rate MVTR)

Moisture-vapor transmission rates

Moisture-vapor transmission rates MVTRs)

Note (Water Vapor Transmission)

Nylon water-vapor transmission rate

Oxygen vapor transmission rate

Permeability water vapor transmission rate

Transmission Analysis of Gases and Vapors

Water vapor transmission

Water vapor transmission characteristics

Water vapor transmission method

Water vapor transmission properties

Water vapor transmission rate WVTR)

Water-vapor transmission WVTR)

Water-vapor transmission rates

© 2024 chempedia.info