Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacetal processes

The preparation of high molecular weight polyformaldehyde requires extremely pure formaldehyde. Formaldehyde obtained directly from formalin often contains impurities such as water, methanol and formic acid and is not suitable. Thus, trioxan and paraformaldehyde (see section 9.3.1.), which can be obtained in a state of high purity, are convenient sources of formaldehyde in commercial polyacetal processes. It may be noted that the production of polyformaldehyde consumes a very minor proportion of the total output of formaldehyde. [Pg.174]

Although there is a substantial body of information in the pubHc domain concerning the preparation of polyacetals, the details of processes for manufacturiag acetal resins are kept highly confidential by the companies that practice them. Nevertheless, enough information is available that reasonably accurate overviews can be surmised. Manufacture of both homopolymer and copolymer involves critical monomer purification operations, discussion of which is outside the scope of this article (see Formaldehyde). Homopolymer and copolymer are manufactured by substantially different processes for accomplishing substantially different polymerisation chemistries. [Pg.58]

Some polymers such as the polyacetals (polyformaldehyde) and poly(methyl methacrylate) depolymerise to monomer on heating. At processing temperatures such monomers are in the gaseous phase and even where there is only a small amount of depolymerisation a large number of bubbles can be formed in the products. [Pg.163]

Gaseous monomers may also be trapped within the processing equipment and accidents have occurred as a consequence of the resulting pressure buildup. In the case of the polyacetals and poly(vinyl chloride) it is reported that at elevated temperatures these materials form a more or less explosive combination so that it is important to separate these materials rigorously at the processing stage. [Pg.163]

The properties of the nylons are considerably affected by the amount of crystallisation. Whereas in some polymers, e.g. the polyacetals and PCTFE, processing conditions have only a minor influence on crystallinity, in the case of the nylons the crystallinity of a given polymer may vary by as much as 40%. Thus a moulding of nylon 6, slowly cooled and subsequently annealed, may be 50-60% crystalline, while rapidly cooled thin-wall mouldings may be only 10% crystalline. [Pg.489]

It is to be noted that there appear to be four processes which lead to degradation of polyacetals. [Pg.535]

At room temperature there is only a small decrease in free energy on conversion of monomer to polymer. At higher temperatures the magnitude of the free energy change decreases and becomes zero at 127°C above this temperature the thermodynamics indicate that depolymerisation will take place. Thus it is absolutely vital to stabilise the polyacetal resin both internally and externally to form a polymer which is sufficiently stable for processing at the desired elevated temperatures. [Pg.537]

Some typical properties of polyester-glass laminates are given in Table 25.1. From these figures it will be seen that laminates can have very high tensile strengths. On the other hand some laminates made by hand lay-up processes may have mechanical properties not very different from those of thermoplastics such as the polyacetals and unplasticised PVC. [Pg.706]

Economic and ecological aspects of chemical recycling are examined, and the application of such processes to the recovery of monomers and intermediates from PETP, polyamides, polyurethanes, polycarbonates, unsaturated polyesters, polyacetals, PMMA and PS is discussed. 17 refs. SNIA... [Pg.79]

Essentially nonionic soil-release agents comprise polyesters, polyamides, polyurethanes, polyepoxides and polyacetals. These have been used mainly on polyester and polyester/ cellulosic fabrics, either crosslinked to effect insolubilisation (if necessary) or by surface adsorption at relatively low temperature. Polyester soil-release finishes have been most important, particularly for polyester fibres and their blends with cellulosic fibres. These finishes, however, have much lower relative molecular mass (1000 to 100 000) than polyester fibres and hence contain a greater proportion of hydrophilic hydroxy groups. They have been particularly useful for application in laundering processes. These essentially nonionic polymers may be given anionic character by copolymerising with, for example, the carboxylated polymers mentioned earlier these hybrid types are generally applied with durable press finishes. [Pg.267]

The addition of an enolsilane to an aldehyde, commonly referred to as the Mukaiyama aldol reaction, is readily promoted by Lewis acids and has been the subject of intense interest in the field of chiral Lewis acid catalysis. Copper-based Lewis acids have been applied to this process in an attempt to generate polyacetate and polypropionate synthons for natural product synthesis. Although the considerable Lewis acidity of many of these complexes is more than sufficient to activate a broad range of aldehydes, high selectivities have been observed predominantly with substrates capable of two-point coordination to the metal. Of these, benzy-loxyacetaldehyde and pyruvate esters have been most successful. [Pg.114]

Other areas of application include a number of plastics which are processed at elevated temperature. P.R.209 lends color to polyolefins (in which it only slightly affects the shrinkage), to ABS, to polyacetal resins, and other industrial polymers. [Pg.469]

In an effort to optimize the solvent-containing passive sampler design, Zabik (1988) and Huckins (1988) evaluated the organic contaminant permeability and solvent compatibility of several candidate nonporous polymeric membranes (Huckins et al., 2002a). The membranes included LDPE, polypropylene (PP), polyvinyl chloride, polyacetate, and silicone, specifically medical grade silicone (silastic). Solvents used were hexane, ethyl acetate, dichloromethane, isooctane, etc. With the exception of silastic, membranes were <120- um thick. Because silicone has the greatest free volume of all the nonporous polymers, thicker membranes were used. Although there are a number of definitions of polymer free volume based on various mathematical treatments of the diffusion process, free volume can be viewed as the free space within the polymer matrix available for solute diffusion. [Pg.11]

Polyacetals are sensitive to high-energy radiation and sterilization by this process can only be used if high mechanical properties are not required impact resistance in particular is altered. Exposure to doses exceeding 30kJ/kg causes yellowing and a decrease of the impact resistance. [Pg.458]

Masamoto J, Matsuzaki K, Iwaisako T, Yoshida K, Kagawa K, Nagahara H (1993) Development of a new advanced process for manufacturing polyacetal resins. Part 3. End-capping during polymerization for manufacturing acetal homopolymer and copolymer. J Appl Polym Sci 50 1317-1329... [Pg.45]

Polyacetals. Simionescu and coworkers (28) have extended to polyoxy-methylene the process of grafting vinyl polymers (acrylonitrile and methylmethacrylate). They performed the synthesis using a virbomill at room temperature under vacuum (10.1 Torr). The initial monomer-polymer ratio was 1 -5/1.0 and the degree of vibromill packing 0.44. Before milling the polyoxymethylene granules were dissolved in dimethyl formamide and repredpitated with the aim of stabilizer removal and for reduction of polymer particle size (from 2-2.5 mm to 0.05-0.10 mm). Full details of the reaction have been described (40). [Pg.14]

Among the more common thermoplastics from ring opening polymerization of interest in composite processing are polylactams, polyethers, polyacetals, and polycycloolefins. It has also been shown that polycarbonates can be produced from cyclic carbonates [22], Anionic ring opening polymerization of caprolactam to nylon 6 is uniquely suited to form a thermoplastic matrix for fiber-reinforced composites, specifically by the reaction injection pultrusion process [23-25]. The fast reaction kinetics with no by-products and the crystalline... [Pg.42]

Polyformaldehyde. Polyformaldehyde or polyacetal is made by two different processes. Delrin is made from formaldehyde by anionic polymerization catalyzed by a tertiary amine. The homopolymer is end-capped with acetic anhydride. Celcon is made from trioxane cationic copolymerization using boron trifluoride catalyst and ethylene oxide (2-3%) as the comonomer. Boron trifluoride is a Lewis acid that associates with trioxane and opens up the six-membered ring. Ethylene oxide provides the end capping. Without an end cap, polyformaldehyde is thermally unstable and loses formaldehyde units. [Pg.98]

Polyoxymethylene (POM) plastics are highly crystalline thermoplastics that are obtained by polymerization of formaldehyde and can also be in the form of trioxy-methylene oligomers (trioxane). The world-wide consumption in 1997 was 0.5 x 106 t for car parts and other articles processed by injection moulding. Polyacetals are primarily engineering materials being used to replace metals. [Pg.35]

Trogamid T can be processed without difficulty by the normal methods used for thermoplastics (5). In this respect it offers fewer problems than polyacetal or polycarbonate, for example. Some Trogamid T properties can be improved by biaxial orientation. The effects, however, are lower than with crystalline polymers. [Pg.643]

Cationic polymerizations are not only important commercial processes, but, in some cases, are attractive laboratory techniques for preparing well-defined polymers and copolymers. Polyacetal, poly(tetramethyl-ene glycol), poly(e-caprolactam), polyaziridine, polysiloxanes, as well as butyl rubber, poly(N-vinyl carbazol), polyindenes, and poly(vinyl ether)s are synthesized commercially by cationic polymerizations. Some of these important polymers can only be prepared cationically. Living cationic polymerizations recently have been developed in which polymers with controlled molecular weights and narrow polydispersity can be prepared. [Pg.1]

Another monomer that belongs to this group is cyclic trimer of formaldehyde, 1,3,5-trioxane. Cationic polymerization of 1,3,5-trioxane leading to polyoxymethylene (polyformaldehyde, polyacetal) is one of the few industrially important processes in cationic ring-opening polymerization. [Pg.491]

There are two large-scale industrial processes based on the cationic ringopening polymerization production of polyacetals by polymerization of... [Pg.527]


See other pages where Polyacetal processes is mentioned: [Pg.98]    [Pg.155]    [Pg.98]    [Pg.155]    [Pg.72]    [Pg.328]    [Pg.266]    [Pg.266]    [Pg.536]    [Pg.82]    [Pg.69]    [Pg.358]    [Pg.54]    [Pg.7]    [Pg.44]    [Pg.103]    [Pg.328]    [Pg.1333]    [Pg.266]    [Pg.266]    [Pg.748]    [Pg.79]    [Pg.84]    [Pg.5]    [Pg.652]    [Pg.683]   
See also in sourсe #XX -- [ Pg.93 , Pg.99 ]




SEARCH



Polyacetal processing conditions

Polyacetals

© 2024 chempedia.info