Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly tensile strength

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

The cured polymers are hard, clear, and glassy thermoplastic resins with high tensile strengths. The polymers, because of their highly polar stmcture, exhibit excellent adhesion to a wide variety of substrate combinations. They tend to be somewhat britde and have only low to moderate impact and peel strengths. The addition of fillers such as poly (methyl methacrylate) (PMMA) reduces the brittleness somewhat. Newer formulations are now available that contain dissolved elastomeric materials of various types. These mbber-modifted products have been found to offer adhesive bonds of considerably improved toughness (3,4). [Pg.178]

BiaxiaHy oriented films have excellent tensile strength properties and good tear and impact properties. They are especially well regarded for their brilliance and clarity. Essentially all poly(ethylene terephthalate) film is biaxiaHy oriented, and more than 80% of polypropylene film is biaxiaHy oriented. Polystyrene film is oriented, and a lesser amount of polyethylene, polyamide, poly(vinyl chloride), and other polymers are so processed. Some of the specialty films, like polyimides (qv), are also oriented. [Pg.381]

In order to achieve the desired fiber properties, the two monomers were copolymerized so the final product was a block copolymer of the ABA type, where A was pure polyglycoHde and B, a random copolymer of mostly poly (trimethylene carbonate). The selected composition was about 30—40% poly (trimethylene carbonate). This suture reportedly has exceUent flexibiHty and superior in vivo tensile strength retention compared to polyglycoHde. It has been absorbed without adverse reaction ia about seven months (43). MetaboHsm studies show that the route of excretion for the trimethylene carbonate moiety is somewhat different from the glycolate moiety. Most of the glycolate is excreted by urine whereas most of the carbonate is excreted by expired CO2 and uriae. [Pg.191]

Copolymers of S-caprolactone and L-lactide are elastomeric when prepared from 25% S-caprolactone and 75% L-lactide, and rigid when prepared from 10% S-caprolactone and 90% L-lactide (47). Blends of poly-DL-lactide and polycaprolactone polymers are another way to achieve unique elastomeric properties. Copolymers of S-caprolactone and glycoHde have been evaluated in fiber form as potential absorbable sutures. Strong, flexible monofilaments have been produced which maintain 11—37% of initial tensile strength after two weeks in vivo (48). [Pg.192]

In contrast to other polymers the resistance to water permeation is low due to the hydrolysis of the poly(vinyl acetate) (163,164). Ethylene copolymers have been developed which have improved water resistance and waterproofness. The polymer can be used in the latex form or in a spray-dried form which can be preblended in with the cement (qv) in the proper proportion. The compressive and tensile strength of concrete is improved by addition of PVAc emulsions to the water before mixing. A polymer-soHds-to-total-soHds ratio of ca 10 90 is best. The emulsions also aid adhesion between new and old concrete when patching or resurfacing. [Pg.471]

The excellent chemical resistance and physical properties of PVA resins have resulted in broad industrial use. The polymer is an excellent adhesive and possesses solvent-, oil-, and grease-resistant properties matched by few other polymers. Poly(vinyl alcohol) films exhibit high tensile strength, abrasion resistance, and oxygen barrier properties which, under dry conditions, are superior to those of any other known polymer. The polymer s low surface tension provides for excellent emulsification and protective coUoid properties. [Pg.475]

Fig. 8. Tensile strength as a function of relative humidity for fully hydroly2ed poly(vinyl alcohol) films, where A represents DP = 2400 B, DP = 1700 and... Fig. 8. Tensile strength as a function of relative humidity for fully hydroly2ed poly(vinyl alcohol) films, where A represents DP = 2400 B, DP = 1700 and...
Figure 14.6. Relation between tensile strength and degree of hydrolysis for unplasticised poly(vinyl alcohol) film. (After Davidson and Sittig )... Figure 14.6. Relation between tensile strength and degree of hydrolysis for unplasticised poly(vinyl alcohol) film. (After Davidson and Sittig )...
Typical properties of poly(phenylene sulphides) are shown in Table 21.2. Whilst rigidity and tensile strength are similar to those of other engineering... [Pg.594]

The end-use applieations of water-soluble polymers require aeeurate means to eharaeterize the moleeular weight distribution (MWD) and to provide a better understanding of produet performanee. The moleeular weight affeets many physieal properties sueh as solution viseosity, tensile strength, bloek resistanee, water and solvent resistanee, adhesive strength, and dispersing power. Commereially available polymers sueh as poly(vinyl aleohol). [Pg.559]

In most ionomers, it is customary to fully convert to the metal salt form but, in some instances, particularly for ionomers based on a partially crystalline homopolymer, a partial degree of conversion may provide the best mechanical properties. For example, as shown in Fig. 4, a significant increase in modulus occurs with increasing percent conversion for both Na and Ca salts of a poly(-ethylene-co-methacrylic acid) ionomer and in both cases, at a partial conversion of 30-50%, a maximum value, some 5-6 times higher than that of the acid copolymer, is obtained and this is followed by a subsequent decrease in the property [12]. The tensile strength of these ionomers also increases significantly with increasing conversion but values tend to level off at about 60% conversion. [Pg.148]

Poly(hydroxyphenyl maleimide)-b-PBA was added to thermosetting phenol resin to improve heat resistance [63]. PVC blended with poly(vinyl copolymer having cyclohexyl maleimide group)-b-PVC showed improved heat resistance and tensile strength with thermal stability during processing [64]. [Pg.763]

The state of the surface of a brittle solid has been found to exert a considerable influence on the mechanical behaviour observed it is at least as important as the underlying molecular constitution in this regard. The presence of microscopic scratches, voids, or other imperfections will seriously weaken the tensile strength of specimens of glassy polymer, such as poly(methyl methacrylate) at ambient temperatures. [Pg.100]

A series of poly(ester-urethane) urea triblock copolymers have been synthesized and characterized by Wagner et al/ using PCL, polyethylene glycol, and 1,4 diisocyanatobutane with either lysine ethyl ester or putrescine, as the chain extender. These materials have shown the elongation at break from 325% to 560% and tensile strengths from 8 to 20 MPa. Degradation products of this kind of materials did not show any toxicity on cells. [Pg.237]


See other pages where Poly tensile strength is mentioned: [Pg.229]    [Pg.65]    [Pg.73]    [Pg.429]    [Pg.330]    [Pg.348]    [Pg.535]    [Pg.462]    [Pg.468]    [Pg.487]    [Pg.350]    [Pg.155]    [Pg.14]    [Pg.20]    [Pg.268]    [Pg.52]    [Pg.369]    [Pg.390]    [Pg.723]    [Pg.786]    [Pg.148]    [Pg.640]    [Pg.834]    [Pg.921]    [Pg.41]    [Pg.258]    [Pg.303]    [Pg.318]    [Pg.44]    [Pg.52]    [Pg.134]    [Pg.180]    [Pg.200]    [Pg.224]    [Pg.231]    [Pg.354]   
See also in sourсe #XX -- [ Pg.564 ]




SEARCH



Poly -liquid-crystalline tensile strength

Poly block copolymer tensile strength

Poly tensile strength changes

Poly tensile strength data

Tensil strength

© 2024 chempedia.info