Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly sensitivity

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Poly(vinyl cinnamate) Resists. Dichromated resists exhibit numerous shortcomings which include lot-to-lot variabiUty of the components, aging of the formulated resists in solution and in coated form, poor process stabiUty (due to a sensitivity to variations in temperature and humidity), and intrinsically low photosensitivity requiring long exposure times for adequate insolubilization. [Pg.115]

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Cellulosics. CeUulosic adhesives are obtained by modification of cellulose [9004-34-6] (qv) which comes from cotton linters and wood pulp. Cellulose can be nitrated to provide cellulose nitrate [9004-70-0] which is soluble in organic solvents. When cellulose nitrate is dissolved in amyl acetate [628-63-7] for example, a general purpose solvent-based adhesive which is both waterproof and flexible is formed. Cellulose esterification leads to materials such as cellulose acetate [9004-35-7], which has been used as a pressure-sensitive adhesive tape backing. Cellulose can also be ethoxylated, providing hydroxyethylceUulose which is useful as a thickening agent for poly(vinyl acetate) emulsion adhesives. Etherification leads to materials such as methylceUulose [9004-67-5] which are soluble in water and can be modified with glyceral [56-81-5] to produce adhesives used as wallpaper paste (see Cellulose esters Cellulose ethers). [Pg.234]

Lead azide is not readily dead-pressed, ie, pressed to a point where it can no longer be initiated. However, this condition is somewhat dependent on the output of the mixture used to ignite the lead azide and the degree of confinement of the system. Because lead azide is a nonconductor, it may be mixed with flaked graphite to form a conductive mix for use in low energy electric detonators. A number of different types of lead azide have been prepared to improve its handling characteristics and performance and to decrease sensitivity. In addition to the dextrinated lead azide commonly used in the United States, service lead azide, which contains a minimum of 97% lead azide and no protective colloid, is used in the United Kingdom. Other varieties include colloidal lead azide (3—4 pm), poly(vinyl alcohol)-coated lead azide, and British RE) 1333 and RE) 1343 lead azide which is precipitated in the presence of carboxymethyl cellulose (88—92). [Pg.10]

Gun Propellents. Low sensitivity gun propeUants, often referred to as LOVA (low vulnerabUity ammunition), use RDX or HMX as the principal energy components, and desensitizing binders such as ceUulose acetate butyrate or thermoplastic elastomers (TPE) including poly acetal—polyurethane block copolymers, polystyrene—polyacrjiate copolymers, and glycidyl azide polymers (GAP) to provide the required mechanical... [Pg.40]

The anodized surface is often subjected to additional treatment before the radiation-sensitive coating is appHed. The use of aqueous sodium siUcate is well known and is claimed to improve the adhesion of diazo-based compositions ia particular (62), to reduce aluminum metal-catalyzed degradation of the coating, and to assist ia release after exposure and on development. Poly(viQyl phosphonic acid) (63) and copolymers (64) are also used. SiUcate is normally employed for negative-workiag coatings but rarely for positive ones. The latter are reported (65) to benefit from the use of potassium flu o r o zirc onate. [Pg.44]

Poly(lactide-coglycolide). Mixtures of lactide and glycolide monomers have been copolymerised in an effort to extend the range of polymer properties and rates of in vivo absorption. Poly(lactide- (9-glycolide) polymers undergo a simple hydrolysis degradation mechanism, which is sensitive to both pH and the presence of ensymes (32). [Pg.191]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Heat-SensitiZingProcess. Another process used to make latex mbber articles of thicker section involves sensitizing the compound so that it coagulates when heated to a given temperature, then using heated molds to build the article to the desired thickness. Ammonia-preserved latex is used in this process, and polyether, polythioether, or poly(vinyl methyl ether) (PVME) can be used as heat-sensitizing agents. [Pg.259]

Poly(vinyl acetate) emulsions can be made with a surfactant alone or with a protective coUoid alone, but the usual practice is to use a combination of the two. Normally, up to 3 wt % stabilizers may be included in the recipe, but when water sensitivity or tack of the wet film is desired, as in some adhesives, more may be included. The most commonly used surfactants are the anionic sulfates and sulfonates, but cationic emulsifiers and nonionics are also suitable. Indeed, some emulsion compounding formulas require the use of cationic or nonionic surfactants for stable formulations. The most commonly used protective coUoids are poly(vinyl alcohol) and hydroxyethyl cellulose, but there are many others, natural and synthetic, which are usable if not preferable for a given appHcation. [Pg.464]

Inorganic Esters. Boric acid and borax form cycHc esters with poly(vinyl alcohol) (85—100). The reaction is markedly sensitive to pH, boric acid concentration, and the cation-to-boron ratio. An insoluble gel is formed at pH above 4.5—5.0 ... [Pg.480]

Adhesives. Poly(vinyl alcohol) is used as a component in a wide variety of general-purpose adhesives to bond ceUulosic materials, such as paper and paperboard, wood textiles, some metal foils, and porous ceramic surfaces, to each other. It is also an effective binder for pigments and other finely divided powders. Both fully and partially hydrolyzed grades are used. Sensitivity to water increases with decreasing degree of hydrolysis and the addition of plasticizer. Poly(vinyl alcohol) in many appHcations is employed as an additive to other polymer systems to improve the cohesive strength, film flexibiUty, moisture resistance, and other properties. It is incorporated into a wide variety of adhesives through its use as a protective coUoid in emulsion p olymerization. [Pg.488]


See other pages where Poly sensitivity is mentioned: [Pg.214]    [Pg.114]    [Pg.114]    [Pg.263]    [Pg.115]    [Pg.118]    [Pg.123]    [Pg.246]    [Pg.319]    [Pg.234]    [Pg.10]    [Pg.377]    [Pg.378]    [Pg.426]    [Pg.451]    [Pg.71]    [Pg.72]    [Pg.546]    [Pg.548]    [Pg.298]    [Pg.407]    [Pg.407]    [Pg.409]    [Pg.451]    [Pg.148]    [Pg.354]    [Pg.411]    [Pg.46]    [Pg.57]    [Pg.510]    [Pg.528]    [Pg.436]    [Pg.469]    [Pg.471]    [Pg.477]    [Pg.91]    [Pg.122]    [Pg.501]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Poly -based pressure sensitive adhesives

Poly -pyrene sensitivity

Poly Thermo-sensitive gels

Poly ethylene glycol acid-sensitive

Poly lithographic sensitivity

Poly resists, sensitivity

Poly sensitivity curves

Poly sensitivity, measurement

Poly sensitized

Poly sensitized

Poly spectral sensitivity, measurement

Poly yield sensitivity

Temperature-sensitive polymers poly

© 2024 chempedia.info