Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly method

Of particular interest has been the study of the polymer configurations at the solid-liquid interface. Beginning with lattice theories, early models of polymer adsorption captured most of the features of adsorption such as the loop, train, and tail structures and the influence of the surface interaction parameter (see Refs. 57, 58, 62 for reviews of older theories). These lattice models have been expanded on in recent years using modem computational methods [63,64] and have allowed the calculation of equilibrium partitioning between a poly-... [Pg.399]

A graphical method, proposed by Zimm (thus tenned the Zinnn plot), can be used to perfomi this double extrapolation to detemiine the molecular weight, the radius of gyration and the second virial coefficient. An example of a Zinnn plot is shown in figure Bl.9.6 where the light scattering data from a solution of poly... [Pg.1393]

RipoU D R and H A Scheraga 1988. On the Multiple-Mirumum Problem in the Conformational Anal of Polypeptides. II. An Electrostatistically Driven Monte Carlo Method Tests on Poly(L-Alani Biopolymers 27 1283-1303. [Pg.577]

Ghassemieli, E. and Nassehi, V., 2001a. Stiffness analysis of polymeric composites using the finite element method. Adv. Poly. Tech. 20, 42-57. [Pg.189]

N-Benzylamides are recommended when the corresponding acid is liquid and/or water-soluble so that it cannot itself serve as a derivative. Phe benzylamides derived from the simple fatty acids or their esters are not altogether satisfactory (see Table below) those derived from most hydroxy-acids and from poly basic acids or their esters are formed in good yield and are easily purified. The esters of aromatic acids yield satisfactory derivatives but the method must compete with the equally simple process of hydrolysis and precipitation of the free acid, an obvious derivative when the acid is a solid. The procedure fails with esters of keto, sul phonic, inorganic and some halogenated aliphatic esters. [Pg.394]

Plazek et al.t measured the viscosities of a poly(dimethyl siloxane) sample of = 4.1 X 10 over a range of temperatures using the falling-ball method. Stainless steel (P2 = 7.81 g cm" ) balls of two different diameters,... [Pg.131]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

Figure 7.10 Nuclear magnetic resonance spectra of three poly(methyl methacrylate samples. Curves are labeled according to the preominant tacticity of samples. [From D. W. McCall and W. P. Slichter, in Newer Methods of Polymer Characterization, B. Ke (Ed.), Interscience, New York, 1964, used with permission.]... Figure 7.10 Nuclear magnetic resonance spectra of three poly(methyl methacrylate samples. Curves are labeled according to the preominant tacticity of samples. [From D. W. McCall and W. P. Slichter, in Newer Methods of Polymer Characterization, B. Ke (Ed.), Interscience, New York, 1964, used with permission.]...
The phenomena we discuss, phase separation and osmotic pressure, are developed with particular attention to their applications in polymer characterization. Phase separation can be used to fractionate poly disperse polymer specimens into samples in which the molecular weight distribution is more narrow. Osmostic pressure experiments can be used to provide absolute values for the number average molecular weight of a polymer. Alternative methods for both fractionation and molecular weight determination exist, but the methods discussed in this chapter occupy a place of prominence among the alternatives, both historically and in contemporary practice. [Pg.505]

If the poorer solvent is added incrementally to a system which is poly-disperse with respect to molecular weight, the phase separation affects molecules of larger n, while shorter chains are more uniformly distributed. These ideas constitute the basis for one method of polymer fractionation. We shall develop this topic in more detail in the next section. [Pg.535]

HydrophobicaHy Modified, Ethoxylated Urethane. HEUR associative thickeners are in effect poly(oxyethylene) polymers that contain terminal hydrophobe units (66). They can be synthesized via esterification with monoacids, tosylation reactions, or direct reaction with monoisocyanates. There are problems associated with aH of the methods of synthesis. The general commercial procedure for their synthesis is by a step-growth addition of... [Pg.321]

Polyacetaldehyde, a mbbery polymer with an acetal stmcture, was first discovered in 1936 (49,50). More recentiy, it has been shown that a white, nontacky, and highly elastic polymer can be formed by cationic polymerization using BF in Hquid ethylene (51). At temperatures below —75° C using anionic initiators, such as metal alkyls in a hydrocarbon solvent, a crystalline, isotactic polymer is obtained (52). This polymer also has an acetal [poly(oxymethylene)] stmcture. Molecular weights in the range of 800,000—3,000,000 have been reported. Polyacetaldehyde is unstable and depolymerizes in a few days to acetaldehyde. The methods used for stabilizing polyformaldehyde have not been successful with poly acetaldehyde and the polymer has no practical significance (see Acetalresins). [Pg.50]

Alternatively a bonded poly(ethylene glycol) capillary column held at 35°C for 5 min and programmed to 190°C at 8°C/min may be employed to determine all components but water. The Kad-Eischer method for water gives inaccurate results. [Pg.124]

The film tube is collapsed within a V-shaped frame of rollers and is nipped at the end of the frame to trap the air within the bubble. The nip roUs also draw the film away from the die. The draw rate is controlled to balance the physical properties with the transverse properties achieved by the blow draw ratio. The tube may be wound as such or may be sHt and wound as a single-film layer onto one or more roUs. The tube may also be direcdy processed into bags. The blown film method is used principally to produce polyethylene film. It has occasionally been used for polypropylene, poly(ethylene terephthalate), vinyls, nylon, and other polymers. [Pg.380]

Poly(vinylchloride). Cellular poly(vinyl chloride) is prepared by many methods (108), some of which utili2e decompression processes. In all reported processes the stabili2ation process used for thermoplastics is to cool the cellular state to a temperature below its second-order transition temperature before the resia can flow and cause coUapse of the foam. [Pg.407]

Synthesis and Properties. Several methods have been suggested to synthesize polyimides. The predominant one involves a two-step condensation reaction between aromatic diamines and aromatic dianhydrides in polar aprotic solvents (2,3). In the first step, a soluble, linear poly(amic acid) results, which in the second step undergoes cyclodehydration, leading to an insoluble and infusible PL Overall yields are generally only 70—80%. [Pg.530]

Polymerization ofiVIasked Disilenes. A novel approach, namely, the anionic polymerization of masked disilenes, has been used to synthesize a number of poly(dialkylsilanes) as well as the first dialkylamino substituted polysilanes (eq. 13) (111,112). The route is capable of providing monodisperse polymers with relatively high molecular weight M = lO" — 10 ), and holds promise of being a good method for the synthesis of alternating and block copolymers. [Pg.262]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

The viscosity of the latex can also be dependent on pH. In the case of some latices, lowering the pH with a weak acid such as glycine is an effective method for raising the viscosity without destabilising the system. Latices made with poly(vinyl alcohol) as the primary emulsifier can be thickened by increasing the pH with a strong alkaU. [Pg.28]


See other pages where Poly method is mentioned: [Pg.17]    [Pg.17]    [Pg.299]    [Pg.214]    [Pg.214]    [Pg.73]    [Pg.1380]    [Pg.2270]    [Pg.557]    [Pg.1109]    [Pg.263]    [Pg.484]    [Pg.537]    [Pg.640]    [Pg.68]    [Pg.139]    [Pg.207]    [Pg.316]    [Pg.134]    [Pg.167]    [Pg.239]    [Pg.378]    [Pg.283]    [Pg.380]    [Pg.329]    [Pg.532]    [Pg.535]    [Pg.64]    [Pg.149]    [Pg.223]    [Pg.239]    [Pg.245]    [Pg.526]   
See also in sourсe #XX -- [ Pg.312 ]

See also in sourсe #XX -- [ Pg.104 ]

See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Biodegradable Aliphatic Polyester Grafted with Poly(Ethylene Glycol) Having Reactive Groups and Preparation Method Thereof

Enzymic methods poly gels

Functionalization methods unreactive poly

High-molecular-weight poly , synthesis methods

Poly (A) polymerase method

Poly Carlo method

Poly anionic preparative methods

Poly brushes grafting-from method

Poly conjugation methods

Poly covalent bonding methods

Poly etching methods

Poly fabrication methods

Poly films assembly method

Poly films measurement methods

Poly indirect method thermodynamic quantities

Poly materials and methods

Poly methods of preparation

Poly plasma treatment method

Poly pretreatment methods

Poly purification method

Poly radical polymerization method

Poly replication method

Poly replication methods for

Poly staining method for

Poly synthesis method

Poly-3-hydroxybutyrate chemical methods

Quantum-chemical methods poly

© 2024 chempedia.info