Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly fabrication

Single layer OLEDs have been fabricated with a variety of emitter molecules and conjugated polymers such as poly(phenylene vinylene) (PPV). [Pg.243]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

Poly etrafluoroethylene is manufactured and sold in three forms granular, fine powder, and aqueous dispersion each requires a different fabrication technique. Granular resins are manufactured in a wide variety of grades to obtain a different balance between powder flows and end use properties (Pig. 1). Pine powders that are made by coagulating aqueous dispersions also are available in various grades. Differences in fine powder grades correspond to their usefulness in specific appHcations and to the ease of fabrication. Aqueous dispersions are sold in latex form and are available in different grades. A variety of formulation techniques are used to tailor these dispersions for specific appHcations. [Pg.349]

Miscellaneous Applications. CeUular plastics have been used for display and novelty pieces from their eady development. Polystyrene foam combines ease of fabrication with lightweight, attractive appearance, and low cost to make it a favorite in these uses. PhenoHc foam has its principal use in doral displays. Its abiHty to hold large amounts of water for extended periods is used to preserve cut dowers. CeUular poly(vinyl chloride) is used in toys and athletic goods, where its toughness and ease of fabrication into intricate shapes have been valuable. [Pg.417]

In addition to carbon and glass fibers ia composites, aramid and polyimide fibers are also used ia conjunction with epoxy resias. Safety requirements by the U.S. Federal Aeronautics Administration (FAA) have led to the development of flame- and heat-resistant seals and stmctural components ia civiUan aircraft cabias. Wool blend fabrics containing aramids, poly(phenylene sulfide), EDF, and other inherently flame-resistant fibers and fabrics containing only these highly heat- and flame-resistant fibers are the types most frequently used ia these appHcations. [Pg.72]

In the second quarter of the twentieth century, with the development of poly(vinyl chloride), nylon, polyurethane, and other polymers, many new and improved leather-like materials, so-called coated fabrics (qv), were placed on the market. Shortages of leather after World War 11 led to the expansion of these leather-like materials ("man-made" leathers) to replace leather in shoes, clothing, bags, upholstery, and other items. DurabiUty and waterproof quahties superior to leather made coated fabrics advantageous, in spite of imperfection in breathabihty and flexibiUty. Demands for shoes, clothing, and other items are stiU increasing due to growing world population and urbanization. [Pg.88]

Vinyl-Coated Fabrics. Leather substitutes are designed to imitate the appearance of leather with its grain surface. This requirement has been accomphshed by coating substances that are capable of forming a uniform film, and was first met by plasticized poly(vinyl chloride) (PVC). A leather-like material termed vinyl-coated fabric was developed in the 1930s in the United States and Germany. Shortages of leather after World War 11 spurred the expansion of this material. [Pg.89]

HoUow-fiber fabrication methods can be divided into two classes (61). The most common is solution spinning, in which a 20—30% polymer solution is extmded and precipitated into a bath of a nonsolvent, generally water. Solution spinning allows fibers with the asymmetric Loeb-Soufirajan stmcture to be made. An alternative technique is melt spinning, in which a hot polymer melt is extmded from an appropriate die and is then cooled and sohdified in air or a quench tank. Melt-spun fibers are usually relatively dense and have lower fluxes than solution-spun fibers, but because the fiber can be stretched after it leaves the die, very fine fibers can be made. Melt spinning can also be used with polymers such as poly(trimethylpentene), which are not soluble in convenient solvents and are difficult to form by wet spinning. [Pg.71]

Uses. Phthabc anhydride is used mainly in plasticizers, unsaturated polyesters, and alkyd resins (qv). PhthaUc plasticizers consume 54% of the phthahc anhydride in the United States (33). The plasticizers (qv) are used mainly with poly(vinyl chloride) to produce flexible sheet such as wallpaper and upholstery fabric from normally rigid polymers. The plasticizers are of two types diesters of the same monohydric alcohol such as dibutyl phthalate, or mixed esters of two monohydric alcohols. The largest-volume plasticizer is di(2-ethylhexyl) phthalate [117-81-7] which is known commercially as dioctyl phthalate (DOP) and is the base to which other plasticizers are compared. The important phthahc acid esters and thek physical properties are Hsted in Table 12. The demand for phthahc acid in plasticizers is naturally tied to the growth of the flexible poly(vinyl chloride) market which is large and has been growing steadily. [Pg.485]

Vinylidene chloride copolymers were among the first synthetic polymers to be commercialized. Their most valuable property is low permeabiUty to a wide range of gases and vapors. From the beginning in 1939, the word Saran has been used for polymers with high vinylidene chloride content, and it is still a trademark of The Dow Chemical Company in some countries. Sometimes Saran and poly (vinylidene chloride) are used interchangeably in the Hterature. This can lead to confusion because, although Saran includes the homopolymer, only copolymers have commercial importance. The homopolymer, ie, poly (vinylidene chloride), is not commonly used because it is difficult to fabricate. [Pg.427]

Vinylidene Chloride Copolymer Latex. Vinyhdene chloride polymers are often made in emulsion, but usuaUy are isolated, dried, and used as conventional resins. Stable latices have been prepared and can be used direcdy for coatings (171—176). The principal apphcations for these materials are as barrier coatings on paper products and, more recently, on plastic films. The heat-seal characteristics of VDC copolymer coatings are equaUy valuable in many apphcations. They are also used as binders for paints and nonwoven fabrics (177). The use of special VDC copolymer latices for barrier laminating adhesives is growing, and the use of vinyhdene chloride copolymers in flame-resistant carpet backing is weU known (178—181). VDC latices can also be used to coat poly(ethylene terephthalate) (PET) bottles to retain carbon dioxide (182). [Pg.442]

Poly(vinyl acetate) emulsions are used to prime-coat fabrics to improve the adhesion of subsequent coatings or to make them adhere better to plastic film. Plasticized emulsions are appHed, generally by roUer-coating, to the backs of finished mgs and carpets to bind the tufts in place and to impart stiffness and hand. For upholstery fabrics woven from colored yams, PVAc emulsions may be used to bind the tufts of pile fabrics or to prevent sHppage of synthetic yams. [Pg.471]

The fabric is desized after the weaving operation and then passed through a heated water bath to remove all the size. The rate at which this operation can be accompHshed depends to a great degree on solubiUty rate of the poly(vinyl alcohol). Difficulties encountered in completely removing the lubricating wax, usually tallow wax, has led to the development of several wax-free size compositions (303—311). The main component contained in these blends is PVA in combination with a small amount of a synthetic water-soluble lubricant. [Pg.488]

Fibers. Poly(vinyl alcohol) fibers possess excellent strength characteristics and provide a pleasant feel in fabrics. The fiber is usually spun by a wet process employing a concentrated aqueous solution of sodium sulfate as the coagulating bath. Water insolubiUty, even in boiling water, can be obtained by combining stretching, heat treatment, and acetalization with formaldehyde. Super hydrolyzed PVA is the preferred material for fiber production. [Pg.489]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]


See other pages where Poly fabrication is mentioned: [Pg.2762]    [Pg.115]    [Pg.207]    [Pg.207]    [Pg.240]    [Pg.442]    [Pg.487]    [Pg.417]    [Pg.514]    [Pg.281]    [Pg.361]    [Pg.67]    [Pg.73]    [Pg.73]    [Pg.265]    [Pg.270]    [Pg.174]    [Pg.10]    [Pg.393]    [Pg.492]    [Pg.240]    [Pg.68]    [Pg.535]    [Pg.536]    [Pg.507]    [Pg.54]    [Pg.350]    [Pg.440]    [Pg.471]    [Pg.487]    [Pg.487]    [Pg.488]    [Pg.502]    [Pg.433]    [Pg.558]    [Pg.327]   
See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Hollow fibers, fabrics poly

Poly active element fabrication

Poly ether polyols fabrication

Poly fabrication methods

Poly fabrication profile

Poly fabrication, nanotubes

Poly microchip fabrication

Poly stamp fabrication

Poly tubes fabrication

© 2024 chempedia.info