Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experiments poly

The earliest SFA experiments consisted of bringing the two mica sheets into contact m a controlled atmosphere (figure Bl.20.61 or (confined) liquid medium [14, 27, 73, 74 and 75]. Later, a variety of surfactant layers [76, 77], polymer surfaces [5, 9, fO, L3, 78], poly electrolytes [79], novel materials [ ] or... [Pg.1738]

This experiment describes a simple gravimetric procedure for determining the %w/w Cl in samples of poly(vinyl chloride). [Pg.266]

As we did in the case of relaxation, we now compare the behavior predicted by the Voigt model—and, for that matter, the Maxwell model—with the behavior of actual polymer samples in a creep experiment. Figure 3.12 shows plots of such experiments for two polymers. The graph is on log-log coordinates and should therefore be compared with Fig. 3.11b. The polymers are polystyrene of molecular weight 6.0 X 10 at a reduced temperature of 100°C and cis-poly-isoprene of molecular weight 6.2 X 10 at a reduced temperature of -30°C. [Pg.170]

The phenomena we discuss, phase separation and osmotic pressure, are developed with particular attention to their applications in polymer characterization. Phase separation can be used to fractionate poly disperse polymer specimens into samples in which the molecular weight distribution is more narrow. Osmostic pressure experiments can be used to provide absolute values for the number average molecular weight of a polymer. Alternative methods for both fractionation and molecular weight determination exist, but the methods discussed in this chapter occupy a place of prominence among the alternatives, both historically and in contemporary practice. [Pg.505]

First, we consider the experimental aspects of osmometry. The semiperme-able membrane is the basis for an osmotic pressure experiment and is probably its most troublesome feature in practice. The membrane material must display the required selectivity in permeability-passing solvent and retaining solute-but a membrane that works for one system may not work for another. A wide variety of materials have been used as membranes, with cellophane, poly (vinyl alcohol), polyurethanes, and various animal membranes as typical examples. The membrane must be thin enough for the solvent to pass at a reasonable rate, yet sturdy enough to withstand the pressure difference which can be... [Pg.548]

Table 9.3 lists the intrinsic viscosity for a number of poly(caprolactam) samples of different molecular weight. The M values listed are number average figures based on both end group analysis and osmotic pressure experiments. Tlie values of [r ] were measured in w-cresol at 25°C. In the following example we consider the evaluation of the Mark-Houwink coefficients from these data. [Pg.605]

Poly(anhydrides). Poly(anhydrides) are another class of synthetic polymers used for bioerodible matrix, dmg dehvery implant experiments. [Pg.192]

The forecasts made in 1985 (77) of 8—8.5% worldwide aimual growth have not materialized. The 2 x lOg + /yr engineering plastic production reported for 1985—1986 has remained fairly constant. Whereas some resins such as PET, nylon-6, and nylon-6,6 have continued to experience growth, other resins such as poly(phenylene oxide) have experienced downturns. This is due to successhil inroads from traditional materials (wood, glass, ceramics, and metals) which are experiencing a rebound in appHcations driven by new technology and antiplastics environmental concerns. Also, recycling is likely to impact production of all plastics. [Pg.277]

One of the earliest observations of high eonductivity in sueh a material was in a form of poly(acetylene) by a Japanese team (Shirakawa and Ikeda 1971). Perhaps one should date the pursuit of semieondueting polymer deviees from that experiment. It soon became clear that conjugated polymers had a severe drawback most of them are extremely stable against potential solvents they cannot be forced... [Pg.334]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

The study of acid-base interaction is an important branch of interfacial science. These interactions are widely exploited in several practical applications such as adhesion and adsorption processes. Most of the current studies in this area are based on calorimetric studies or wetting measurements or peel test measurements. While these studies have been instrumental in the understanding of these interfacial interactions, to a certain extent the interpretation of the results of these studies has been largely empirical. The recent advances in the theory and experiments of contact mechanics could be potentially employed to better understand and measure the molecular level acid-base interactions. One of the following two experimental procedures could be utilized (1) Polymers with different levels of acidic and basic chemical constitution can be coated on to elastomeric caps, as described in Section 4.2.1, and the adhesion between these layers can be measured using the JKR technique and Eqs. 11 or 30 as appropriate. For example, poly(p-amino styrene) and poly(p-hydroxy carbonyl styrene) can be coated on to PDMS-ox, and be used as acidic and basic surfaces, respectively, to study the acid-base interactions. (2) Another approach is to graft acidic or basic macromers onto a weakly crosslinked polyisoprene or polybutadiene elastomeric networks, and use these elastomeric networks in the JKR studies as described in Section 4.2.1. [Pg.134]

In one of the early experiments designed to elucidate the genetic code, Marshall Nirenberg of the U.S. National Institutes of Health (Nobel Prize in physiology or medicine, 1968) prepared a synthetic mRNA in which all the bases were uracil. He added this poly(U) to a cell-free system containing all the necessary materials for protein biosynthesis. A polymer of a single amino acid was obtained. What amino acid was polymerized ... [Pg.1191]

Table 5-1. Enantioselectivities determined for several drugs. All experiments were performed at room temperature, except those marked with, which were performed at 4 °C. In some cases a lipophilic anion was used to facilitate the solubilization of the drug in the organic phases (PFj = hexafluorophosphate BPh = tetraphenyl borate). DHT = dihexyl tartrate DBT = dibenzoyl tartrate PLA = poly (lactic acid). ... Table 5-1. Enantioselectivities determined for several drugs. All experiments were performed at room temperature, except those marked with, which were performed at 4 °C. In some cases a lipophilic anion was used to facilitate the solubilization of the drug in the organic phases (PFj = hexafluorophosphate BPh = tetraphenyl borate). DHT = dihexyl tartrate DBT = dibenzoyl tartrate PLA = poly (lactic acid). ...
EL experiments showed that the yellow-emitting LEDs prepared from LPPP 12 exhibit quite remarkable characteristics (single layer construction ITO/LPPP 12/Ca quantum efficiency ca. 1.0%, applied voltage 4-6 V 135]). These figures are in the range of the best values described hitherto for polymeric emitters in a single layer arrangement, for example, poly(pcira-phenylenevinylene) PPV and PPV derivatives. [Pg.36]

In the meantime another development had decisively altered the outset situation plastics had been discovered and synthesized, among them also some acid-stable ones such as phenol-formaldehyde resin or poly(vinyl chloride) (PVC). These opened up new possibilities cellulose papers could be impregnated with phenol-formaldehyde resin solution and thus rendered sufficiently acid-stable, and sintered sheets from PVC powder were developed. Independent separators producers were founded, combining knowledge of the chemical industry with experience of the battery industry and thus accelerating the development process. [Pg.252]

Continuous variation mixing experiments in aqueous media have shown that A12 and Poly U form a complex with a 1 1 stoichiometry in bases, and T12 and... [Pg.146]

By Naylor and Gilliam62, d (pT)6 was condensed in the presence of Poly A with carbodiimide to give d-(pT)12 with a yield of 5%. In the experiment of Shabarova and Prokofiev67, d-(pA)2 preactivated in the form of an amino add amidate was condensed on Poly U to give products with a yield of 10%. Uesugi and Ts o68 studied the condensation of (2 MeIp)6 or (2 MeIp)s in the presence of a Poly C template. The relative overall yield of the oligomer products was 43 to 71%. [Pg.151]

IX lists the results of some of these experiments, comparing the nitrile materials with polyethylene, the most widely used plastic container material, and poly (vinyl chloride), which is being used for a number of food packaging applications. Note that in all instances there is an order of magnitude difference between the Lopac container and the other two. For flavorants, which are usually present in very low concentrations, this dilute solution test is probably more significant than a standard permeability test which only measures weight losses of the pure ingredient. [Pg.77]


See other pages where Experiments poly is mentioned: [Pg.73]    [Pg.114]    [Pg.484]    [Pg.537]    [Pg.640]    [Pg.330]    [Pg.430]    [Pg.191]    [Pg.442]    [Pg.501]    [Pg.43]    [Pg.188]    [Pg.46]    [Pg.171]    [Pg.251]    [Pg.252]    [Pg.101]    [Pg.551]    [Pg.353]    [Pg.457]    [Pg.572]    [Pg.186]    [Pg.56]    [Pg.97]    [Pg.184]    [Pg.187]    [Pg.384]    [Pg.214]    [Pg.259]    [Pg.40]    [Pg.84]    [Pg.149]    [Pg.172]   
See also in sourсe #XX -- [ Pg.66 , Pg.67 ]




SEARCH



© 2024 chempedia.info