Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly enhancement using

The major poly isocyanates used (2) are toluene diisocyanate (TDI) and the less volatile 4,4/-methylene diphenylene diisocyanate (MDI), which, because it is a crystalline solid in the pure form, has to be used in a relatively crude form. The crude polyisocyanate is a mixture of MDI variants that is conveniently a liquid product with a mean functionality greater than 2. The use of a pure, liquid diisocyanate, however, would enable polyurethanes to be formed having relatively enhanced physical properties (2) and would also greatly simplify processing by removing the need to use elevated temperatures, solvents, or isocyanate prepolymers as with MDI. [Pg.422]

Kuwahara Y, Kang D-Y, Copeland JR, BrimelU NA, Didas SA, BoUini P, Sievers C, Kamegawa T, Yamashita H, Jones CW (2012) Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc 134 10757-10760... [Pg.12]

Kuncoro, E. P., Roussy, J., and Guibal, E. 2005. Mercury recovery by polymer-enhanced ultrafiltration Comparison of chitosan and Poly(ethylenimine) used as macroligand. Sep. Sci. Technol. 40 659-684. [Pg.187]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

Polyimide. Polyimide is a biaxiaHy oriented high performance film that is tough, flexible, and temperature- and combustion-resistant. Its room temperature properties compare to poly(ethylene terephthalate), but it retains these good characteristics at temperatures above 400°C. Its electrical resistance is good and it is dimensionally stable. The principal detriment is fairly high moisture absorbance. The main uses are for electrical insulation, particularly where high temperatures are prevalent or ionizing radiation is a problem. The films may be coated to reduce water absorption and enhance... [Pg.377]

In conventional tenter orientation, the sequence of steps is as described above (MD—TD). In some cases it is advantageous to reverse the draw order (TD—MD) or to use multiple draw steps, eg, MD—TD—MD. These other techniques are used to produce "tensilized" films, where the MD tensile properties are enhanced by further stretching. The films are generally unbalanced in properties and in extreme cases may be fibrillated to give fiber-like elements for special textile appHcations. Tensilized poly(ethylene terephthalate) is a common substrate for audio and video magnetic tape and thermal transfer tape. [Pg.381]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

The bonding properties of (Ti02) have been used for size-reinforcing of glass fibers so that they adhere to asphalt or to a PTEE—polysulfide mixture to impart enhanced flex endurance (434—436). Poly(vinyl alcohol) (PVA) solutions mixed with sucrose can be cross-linked with the lactic acid chelate and used generally for glass-fiber sizing (437). [Pg.161]

The calciaed or meta kaolin is used almost exclusively ia poly(vinyl chloride) wire iasulation because it enhances the electrical resistivity of the compound. [Pg.209]

Poly(phenylene sulfide) (PPS) is another semicrystalline polymer used in the composites industry. PPS-based composites are generally processed at 330°C and subsequently cooled rapidly in order to avoid excessive crystallisation and reduced toughness. The superior fire-retardant characteristics of PPS-based composites result in appHcations where fire resistance is an important design consideration. Laminated composites based on this material have shown poor resistance to transverse impact as a result of the poor adhesion of the fibers to the semicrystalline matrix. A PPS material more recently developed by Phillips Petroleum, AVTEL, has improved fiber—matrix interfacial properties, and promises, therefore, an enhanced resistance to transverse impact (see PoLYAffiRS containing sulfur). [Pg.8]

Ethers, esters, amides and imidazolidines containing an epithio group are said to be effective in enhancing the antiwear and extreme pressure peiformance of lubricants. Other uses of thiiranes are as follows fuel gas odorant (2-methylthiirane), improvement of antistatic and wetting properties of fibers and films [poly(ethyleneglycol) ethers of 2-hydroxymethyl thiirane], inhibition of alkene metathesis (2-methylthiirane), stabilizers for poly(thiirane) (halogen adducts of thiiranes), enhancement of respiration of tobacco leaves (thiirane), tobacco additives to reduce nicotine and to reduce phenol levels in smoke [2-(methoxymethyl)thiirane], stabilizers for trichloroethylene and 1,1,1-trichloroethane (2-methylthiirane, 2-hydroxymethylthiirane) and stabilizers for organic compounds (0,0-dialkyldithiophosphate esters of 2-mercaptomethylthiirane). The product of the reaction of aniline with thiirane is reported to be useful in the flotation of zinc sulfide. [Pg.184]

Mention may also be made here of a number of polyfunctional compounds such as allyl methacrylate and glycol dimethacrylates which have been used to produce a cross-linked sheet of enhanced heat resistance compared with conventional poly(methyl methacrylate). Some manufacturers supply the sheet in an incompletely cross-linked state which allows a limited amount of forming after which the sheet may be further heated to complete the cure. [Pg.423]

The use of ABS has in recent years met considerable competition on two fronts, particularly in automotive applications. For lower cost applications, where demands of finish and heat resistance are not too severe, blends of polypropylene and ethylene-propylene rubbers have found application (see Chapters 11 and 31). On the other hand, where enhanced heat resistance and surface hardness are required in conjunction with excellent impact properties, polycarbonate-ABS alloys (see Section 20.8) have found many applications. These materials have also replaced ABS in a number of electrical fittings and housings for business and domestic applications. Where improved heat distortion temperature and good electrical insulation properties (including tracking resistance) are important, then ABS may be replaced by poly(butylene terephthalate). [Pg.464]

In a partially crystalline homopolymer, nylon 6, property enhancement has been achieved by blending with a poly(ethylene-co-acrylic acid) or its salt form ionomer [24]. Both additives proved to be effective impact modifiers for nylon 6. For the blends of the acid copolymer with nylon 6, maximum impact performance was obtained by addition of about 10 wt% of the modifier and the impact strength was further enhanced by increasing the acrylic acid content from 3.5 to 6%. However, blends prepared using the salt form ionomer (Sur-lyn 9950-Zn salt) instead of the acid, led to the highest impact strength, with the least reduction in tensile... [Pg.151]


See other pages where Poly enhancement using is mentioned: [Pg.421]    [Pg.415]    [Pg.821]    [Pg.4988]    [Pg.158]    [Pg.765]    [Pg.298]    [Pg.207]    [Pg.377]    [Pg.361]    [Pg.68]    [Pg.150]    [Pg.495]    [Pg.222]    [Pg.399]    [Pg.434]    [Pg.53]    [Pg.463]    [Pg.489]    [Pg.433]    [Pg.443]    [Pg.348]    [Pg.105]    [Pg.422]    [Pg.152]    [Pg.424]    [Pg.929]    [Pg.187]    [Pg.591]    [Pg.637]    [Pg.263]    [Pg.291]    [Pg.340]    [Pg.599]    [Pg.40]    [Pg.434]   
See also in sourсe #XX -- [ Pg.563 ]




SEARCH



Poly , use

Poly enhancement

© 2024 chempedia.info