Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly dicarboxylic acid

Kokufuta E. Electrophoretic and viscometric properties of poly(dicarboxylic acids). Polymer 1980 21 177-182. [Pg.664]

Kinetic and mechanistic studiesoftheimidizationreactionhave been made and the effects of amine activators, catalysts, and palladium " have all been studied. Imide plastics have also been produced by the reaction of diamine-esters of poly(dicarboxylic acid) on filler surfaces in a quasi reaction-injection moulding process. ... [Pg.102]

Polyphenylene polymers can be prepared by this coupling. For example, the preparation of poly(/i-quaterphenylene-2,2 -dicarboxylic acid) (643) was carried out using aqueous NaHCO and a water-soluble phosphine ligand (DPMSPP)[5I I]. Branched polyphenylene was also prepared[5l2). [Pg.219]

The polyamides poly(hexamethylene sebacamide) and poly(hexamethylene adipamide) are also widely known as nylon-6,10 and nylon-6,6, respectively. The numbers following the word nylon indicate the number of carbon atoms in the diamine and dicarboxylic acid, in that order. On the basis of this same system, poly (e-caprolactam) is also known as nylon-6. [Pg.22]

As with poly(ethylene terephthalate) PBT-based copolymers have been introduced to overcome some of the deficiencies of the homopolymer. For example, the rather low notched impact strength of unreinforced grades has been overcome by partial replacement of the terephthalic acid with a longer chain aliphatic dicarboxylic acid. Improved toughness has also been obtained by grafting about 5% of ethylene and vinyl acetate onto the polyester backbone. [Pg.727]

With a somewhat lower level of heat resistance but with many properties that make them of interest as engineering materials alongside the polycarbonates, polysulphones, poly(phenylene sulphides) and polyketones are the so-called polyarylates which are defined as polyester from bis-phenols and dicarboxylic acids. [Pg.731]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]

At constant PBT/PTMO composition, when the molar mass of PTMO block is >2000, partial crystallization of the polyether phase leads to copolymer stiffening. The properties of polyesterether TPEs are not dramatically different when PTMO is replaced by polyethers such as poly(oxyethylene) (PEO) or poly(oxypropylene). PEO-based TPEs present higher hydrophilicity, which may be of interest for some applications such as waterproof breathable membranes but which also results in much lower hydrolysis resistance. Changing PBT into a more rigid polymer by using 2,6-naphthalene dicarboxylic acid instead of terephthalic acid results in compounds that exhibit excellent general properties but poorer low-temperature stiffening characteristics. [Pg.55]

Dibasic acid monomers, 59 Dibasic acid poly esterifications, 17 Dibromo derivatives, 82 Dibutyltin dilaurate (DBTDL), 232 Dicarboxylic acid monomers, volatilization of, 72... [Pg.581]

Cortisone acetate has been incorporated into several polyanhydrides (15). The rates of release of cortisone acetate from microcapsules of poly(terephthaUc acid), poly(terephthaUc acid-sebacic acid) 50 50, and poly(carboxyphenoxypropane-sebacic acid) 50 50 are shown in Fig. 8. These microcapsules were produced by an interfacial condensation of a diacyl chloride in methylene chloride with the appropriate dicarboxylic acid in water, with or without the crosslinking agent trimesoyl chloride. This process produces irregular microcapsules with a rough surface. The release rates of cortisone acetate from these microcapsules varied correspondingly with the rate of degradation of the respective polyanhydrides. It can be expected that the duration of release of cortisone acetate from solid microspheres, such as those produced by the hot-melt process, would be considerably longer. [Pg.54]

In an attempt to increase Tg of the poly[bis(o-carboxyphenoxy)alkanes], Anastasiou and Uhrich (2000a) replaced the alkane moiety by ortho-, meta-, and para-xylenes producing poly[o-/m-bis(p-carboxyphenoxy)xylene]s (Po-p-CPX, and Pm-p-CPX) and poly[o-/m-/p-bis(o-carboxyphenoxy)xylene]s (Po-o-CPX, Pm-o-CPX, and Pp-o-CPX). They found Po-p-CPX to be relatively insoluble and were unable to synthesize poly[p-bis(p-carboxy-phenoxy)xylene] because of the insolubility of the dicarboxylic acid (Anastasiou and Uhrich, 2000a). Po-o-CPX and Pm-o-CPX demonstrated the most favorable solubility and neither exhibited a melting temperature. All of the polymers synthesized had Tgs between 71 and 101°C (Anastasiou and Uhrich, 2000a). [Pg.182]

A powerful and efficient method for the preparation of poly(ketone)s is the direct polycondensation of dicarboxylic acids with aromatic compounds or of aromatic carboxylic acids using phosphorus pentoxide/methanesulfonic acid (PPMA)16 or polyphosphoric acid (PPA)17 as the condensing agent and solvent. By applying both of these reagents to the synthesis of hexafluoroisopropylidene-unit-containing aromatic poly(ketone)s, various types of poly(ketone)s such as poly(ether ketone) (11), poly(ketone) (12), poly(sulfide ketone) (13), and poly-... [Pg.137]

Several routes have been reported for the synthesis of aromatic poly(azole)s such as poly(benzimidazole), poly(benzoaxazole), and poly(benzthiazole) melt polycondensation of dicarboxylic acid diphenyl esters with tetramines21 and high-temperature solution polycondensation of dicarboxylic acids or their derivatives with tetramine hydrochlorides in PPA.22 PPA acts as condensing agent and solvent. Ueda etal.23 developed a modified method for the synthesis ofpolyazoles with the use of PPM A. [Pg.143]

These are obtained by poly condensation of dihydrazides of dicarboxylic acids (in an excess of hydrazine hydrate) ... [Pg.199]

Jackson, Jr, W. J. and Morris, J. C., Poly esters of 4,4 -biphenyl dicarboxylic acid and aliphatic glycols for high-performance plastics, in Liquid Crystalline Polymers, ACS Symposium Series, Vol. 453, American Chemical Society, Washington, DC, 1990, pp. 16-32. [Pg.263]

The modification of PET with naphthalene-2,6-dicarboxylic acid and other additional comonomers is a common measure in bottle manufacturing. Copolyesters based on this compound show excellent barrier properties. Such materials can be produced by addition of the desired amount of comonomer during polymer processing or by blending PET with poly(ethylene naphthalate) (PEN). Additionally, PEN can also be modified by other comonomers such as isophthalic acid (IPA) to improve the flow properties and reduce the melting point. The high price of naphthalene dicarboxylic acid is the reason for its limited application. The overall cost may be reduced by using TPA or IPA as comonomers. [Pg.479]

A new poly(7-oxobomene-5,6-dicarboxylic acid-Wod -norbomene)-coa(cd silica has been synthesized and applied for the separation of flavonoids in model systems and in the extracts of onion, elder flower blossom, lime blossom, St. John s Wort and red wine. Separation was performed in a (150 X 4 mm i.d. particle size 7 /rm) column at room temperature. Flavonoids (quercitrin, myricetin, quercetin, kaempferol and acacetin) were separated with gradient elution water-ACN (20 mmol TFA) from 78 22 to 70 30 v/v in 3min. The flow rate was 2 ml/min. The separation of the standard mixture is shown in Fig. 2.51. It has been stated that the method is rapid, accurate and the MS detection makes possible the reliable identification of flavonoids [153],... [Pg.167]

Propanediol. Both the diol and the dicarboxylic acid components of poly-trimethylene-terephthalate, a high performance polyester fiber with extensive applications in textile apparel and carpeting, are currently manufactured from petrochemical raw materials. [Pg.41]

The aromatic acids, as you would suspect from the name, have a benzene ring connected directly to the carboxyl signature group. Dicarboxylic acids have carbo l, groups attached in two places. Monocarboxylic adds have only one, and of course, the poly acids have three or more.. ... [Pg.256]

Carraher and coworkers employed the last two processes to recover the uranyl ion. The uranyl ion is the natural water-soluble form of uranium oxide. It is also toxic, acting as a heavy metal toxin. Through the use of salts of dicarboxylic acids and poly(acrylic acid), the uranyl ion was removed to 10 M with the resulting product much less toxic and convertible to uranium oxide by heating. [Pg.371]

Fully aromatic polyamides are synthesized by interfacial polycondensation of diamines and dicarboxylic acid dichlorides or by solution condensation at low temperature. For the synthesis of poly(p-benzamide)s the low-temperature polycondensation of 4-aminobenzoyl chloride hydrochloride is applicable in a mixture of N-methylpyrrolidone and calcium chloride as solvent. The rate of the reaction and molecular weight are influenced by many factors, like the purity of monomers and solvents, the mode of monomer addition, temperature, stirring velocity, and chain terminators. Also, the type and amount of the neutralization agents which react with the hydrochloric acid from the condensation reaction, play an important role. Suitable are, e.g., calcium hydroxide or calcium oxide. [Pg.288]

The technical production of poly(benzimidazole) (PBI) is also carried out in two steps. In the first step an aromatic tetramine is condensed with the diphenyl ester of an aromatic dicarboxylic acid at 220-260 °C, yielding a poly(amino amid) with elimination of phenol. Ring closure with elimination of water occurs in the second step (solid-phase polycyclocondensation), conducted at 400 °C and yielding the polybenzimidazole (experimental procedure, see Table 2.3). [Pg.315]

In a comparative study, poly(7-oxanorborn-5-ene-2,3-dicarboxylic acid)-grafted silica supports, again prepared via a grafting-from approach, possessed better separation behavior than the analogous coated separation media [45]. [Pg.147]


See other pages where Poly dicarboxylic acid is mentioned: [Pg.355]    [Pg.220]    [Pg.82]    [Pg.355]    [Pg.220]    [Pg.82]    [Pg.182]    [Pg.47]    [Pg.109]    [Pg.374]    [Pg.49]    [Pg.93]    [Pg.209]    [Pg.65]    [Pg.174]    [Pg.176]    [Pg.177]    [Pg.186]    [Pg.452]    [Pg.457]    [Pg.12]    [Pg.605]    [Pg.393]    [Pg.374]    [Pg.153]    [Pg.157]    [Pg.78]    [Pg.196]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Poly acid

© 2024 chempedia.info