Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly , colloid

The reports were that water condensed from the vapor phase into 10-100-/im quartz or pyrex capillaries had physical properties distinctly different from those of bulk liquid water. Confirmations came from a variety of laboratories around the world (see the August 1971 issue of Journal of Colloid Interface Science), and it was proposed that a new phase of water had been found many called this water polywater rather than the original Deijaguin term, anomalous water. There were confirming theoretical calculations (see Refs. 121, 122) Eventually, however, it was determined that the micro-amoimts of water that could be isolated from small capillaries was always contaminated by salts and other impurities leached from the walls. The nonexistence of anomalous or poly water as a new, pure phase of water was acknowledged in 1974 by Deijaguin and co-workers [123]. There is a mass of fascinating anecdotal history omitted here for lack of space but told very well by Frank [124]. [Pg.248]

Alexandridis P and Hatton T A 1995 Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) blook oopolymer surfaotants in aqueous solutions and at interfaoes thermodynamios, struoture, dynamios, modeling Colloids Surf. A 96 1-46... [Pg.2604]

Wanka G, Floffman FI and Ulbrict W 1990 The aggregation behavior of poly-(oxyethylene)-poly(oxypropylene)-poly-(oxyethylene)-block copolymers in aqueous solutions Colloid Polym. Sc/. 268 101-17... [Pg.2606]

Anti L, Goodwin J W, Flill R D, Ottewill R FI, Owens S M, Papworth S and Waters J A 1986 The preparation of poly (methyl methaorylate) lattioes in non-aqueous media Colloid Surf. 17 67-78... [Pg.2690]

Lead azide is not readily dead-pressed, ie, pressed to a point where it can no longer be initiated. However, this condition is somewhat dependent on the output of the mixture used to ignite the lead azide and the degree of confinement of the system. Because lead azide is a nonconductor, it may be mixed with flaked graphite to form a conductive mix for use in low energy electric detonators. A number of different types of lead azide have been prepared to improve its handling characteristics and performance and to decrease sensitivity. In addition to the dextrinated lead azide commonly used in the United States, service lead azide, which contains a minimum of 97% lead azide and no protective colloid, is used in the United Kingdom. Other varieties include colloidal lead azide (3—4 pm), poly(vinyl alcohol)-coated lead azide, and British RE) 1333 and RE) 1343 lead azide which is precipitated in the presence of carboxymethyl cellulose (88—92). [Pg.10]

Poly(vinyl chloride) is commercially available in the form of aqueous colloidal dispersions (latices). They are the uncoagulated products of emulsion polymerisation process and are used to coat or impregnate textiles and paper. The individual particles are somewhat less than 1 p,m in diameter. The latex may be coagulated by concentrated acids, polyvalent cations and by dehydration with water-miscible liquids. [Pg.355]

Since poly(vinyl acetate) is usually used in an emulsion form, the emulsion polymerisation process is commonly used. In a typical system, approximately equal quantities of vinyl acetate and water are stirred together in the presence of a suitable colloid-emulsifier system, such as poly(vinyl alcohol) and sodium lauryl sulphate, and a water-soluble initiator such as potassium persulphate. [Pg.388]

Poly(vinyl alcohol) will function as a non-ionic surface active agent and is used in suspension polymerisation as a protective colloid. In many applications it serves as a binder and thickener is addition to an emulsifying agent. The polymer is also employed in adhesives, binders, paper sizing, paper coatings, textile sizing, ceramics, cosmetics and as a steel quenchant. [Pg.391]

The PVAc latex containing PVA as a protective colloid prepared in method [III] using the HPO (0.12%)-TA (0,10%) system as an initiator in Table 1 was cast to about 1.8 mm in thickness on a poly(ethylene) plate and dried at room temperature. The dried latex films were 0.7-0.9 mm in thickness and were semi-transparent. The porous film after acetone extraction changed to a white color without a change in the film size. [Pg.172]

Another family of polyols is the filled polyols.llb There are several types, but die polymer polyols are die most common. These are standard polyether polyols in which have been polymerized styrene, acrylonitrile, or a copolymer thereof. The resultant colloidal dispersions of micrometer-size particles are phase stable and usually contain 20-50% solids by weight. The primary application for these polyols is in dexible foams where the polymer filler serves to increase foam hardness and load-bearing capacity. Other filled polyol types diat have been developed and used commercially (mainly to compete with die preeminent polymer polyols) include the polyurea-based PEID (polyhamstoff dispersion) polyols and the urethane-based PIPA (poly isocyanate polyaddition) polyols. [Pg.213]

The polymer in natural rubber consists almost entirely of ci -poly(isoprene) (1.6). The molecules are linear, with relative molar mass typically lying between 300 000 and 500 000. The macromolecular nature of rubber was established mainly by Staudinger in 1922, when he hydrogenated the material and obtained a product that retained its colloidal character, rather than yielding fragments of low relative molar mass. [Pg.20]

Values of are obtained partly by previous calibration using a series of standard light scatterers whose Rayleigh ratios have been precisely determined. Typical standards used in practice are poly(methyl methacrylate) blocks, colloidal silica suspensions, or tungsto-silicic acid, H4SiW 2O40-... [Pg.87]

The process of adsorption of polyelectrolytes on solid surfaces has been intensively studied because of its importance in technology, including steric stabilization of colloid particles [3,4]. This process has attracted increasing attention because of the recently developed, sophisticated use of polyelectrolyte adsorption alternate layer-by-layer adsorption [7] and stabilization of surfactant monolayers at the air-water interface [26], Surface forces measurement has been performed to study the adsorption process of a negatively charged polymer, poly(styrene sulfonate) (PSS), on a cationic monolayer of fluorocarbon ammonium amphiphilic 1 (Fig. 7) [27],... [Pg.7]

Electrophoresis measurements provide a qualitative indication of the assembly of polymer multilayers on colloids [49,50], The -potential as a function of polyelectrolyte layer number for negatively charged polystyrene (PS) particles coated with poly(diallyldimethylam-monium chloride) (PDADMAC) and poly(styrenesulfonate) (PSS) are displayed in Figure... [Pg.510]

Stigter, D, Kinetic Charge of Colloidal Electrolytes from Conductance and Electrophoresis. Detergent Micelles, Poly(methacrylates), and DNA in Univalent Salt Solutions, Journal of Physical Chemistry 83, 1670, 1979. [Pg.621]

Poly-(methacrylic acid) was prepared in 1880 by Fittig and Engel-horn. Mjoen separated the polymer by precipitation and attempted to determine its molecular weight by cryoscopic and ebullioscopic methods. He decided that his product, which he regarded as a colloid, was an octamer but reached no conclusions as to its constitution other than that it was an octabasic acid of the formula C24H4o(COOH)8. [Pg.20]

In Figure 12a (Pd Pt = 1 2) and 12b (Pd Pt = 1 1), only the spectral feature of CO adsorbed on the Pt atoms, i.e., a strong band at 2068 cm and a very weak broad band at around 1880 cm was observed, while that derived from CO adsorbed on Pd atoms at 1941 cm is completely absent, which proved that the Pd-core has been completely covered by a Pt-shell. Recently we also characterized Au-core/Pd-shell bimetallic nanoparticles by the CO-IR [144]. Reduction of two different precious metal ions by refluxing in ethanol/ water in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) gave a colloidal dispersion of core/shell structured bimetallic nanoparticles. In the case of Pd and Au ions, the bimetallic nanoparticles with a Au-core/Pd-shell structure are usually produced. In contrast, it is difficult to prepare bimetallic nanoparticles with the inverted core/shell, i.e., Pd-core/Au-shell structure. A sacrificial hydrogen strategy is useful to construct the inverted core/shell structure, where the colloidal dispersions of Pd cores are treated with hydrogen and then the solution of the second element, Au ions, is slowly... [Pg.64]

In 1989, we developed colloidal dispersions of Pt-core/ Pd-shell bimetallic nanoparticles by simultaneous reduction of Pd and Pt ions in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) [15]. These bimetallic nanoparticles display much higher catalytic activity than the corresponding monometallic nanoparticles, especially at particular molecular ratios of both elements. In the series of the Pt/Pd bimetallic nanoparticles, the particle size was almost constant despite composition and all the bimetallic nanoparticles had a core/shell structure. In other words, all the Pd atoms were located on the surface of the nanoparticles. The high catalytic activity is achieved at the position of 80% Pd and 20% Pt. At this position, the Pd/Pt bimetallic nanoparticles have a complete core/shell structure. Thus, one atomic layer of the bimetallic nanoparticles is composed of only Pd atoms and the core is completely composed of Pt atoms. In this particular particle, all Pd atoms, located on the surface, can provide catalytic sites which are directly affected by Pt core in an electronic way. The catalytic activity can be normalized by the amount of substance, i.e., to the amount of metals (Pd + Pt). If it is normalized by the number of surface Pd atoms, then the catalytic activity is constant around 50-90% of Pd, as shown in Figure 13. [Pg.65]

After our success in preparation of the colloidal dispersions of Pt-core/Pd-shell bimetallic nanoparticles by simultaneous reduction of PdCl2 and H2PtCl6 in refluxing ethanol/water in the presence of poly(V-vinyl-2-pyrroli-done) [15,16] several reports have appeared on the formation of the core/shell-structured bimetallic nanoparticles by simultaneous reactions [5,52,68,183]. [Pg.65]

This method is especially valid for the preparation of gold NPs mixed with activated carbon, which are active and stable for the selective oxidation of hydrocarbons and alcohols in water. Over activated carbon gold could not be directly deposited as NPs by using the techniques described above, such as DP and even by GG. Gold colloids with mean diameters from 2.5 to lOnm stabilized by poly vinyl alcohol or poly vinyl p5rrolidone are used. [Pg.185]

In order to obtain Pt nanoparticles, aqueous solution of 10 M K2PtCl4, which contained 10 M (as monomer unit) of poly-NIPA or poly-NEA, was bubbled with Ar gas and then H2 gas. Then the reaction vessel was sealed tightly and kept in a water bath at a suitable temperature. At given reaction times, the vessels were opened and the samples for transmission electron microscopy (TEM) were prepared by soaking a grid (carbon substrate, Oken) in the colloidal solution and then drying it in the air. The TEM (Hitachi H-8100) was operated at 200 kV. [Pg.301]


See other pages where Poly , colloid is mentioned: [Pg.2608]    [Pg.404]    [Pg.38]    [Pg.116]    [Pg.167]    [Pg.360]    [Pg.67]    [Pg.73]    [Pg.59]    [Pg.60]    [Pg.94]    [Pg.129]    [Pg.442]    [Pg.444]    [Pg.450]    [Pg.452]    [Pg.453]    [Pg.508]    [Pg.508]    [Pg.510]    [Pg.52]    [Pg.87]    [Pg.49]    [Pg.150]    [Pg.173]    [Pg.191]    [Pg.301]    [Pg.303]   


SEARCH



Colloid coating poly electrolytes

Poly , colloid formation

Poly colloidal dispersions

Poly metal colloid

Poly palladium colloid

© 2024 chempedia.info