Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly colloidal dispersion

Poly(vinyl chloride) is commercially available in the form of aqueous colloidal dispersions (latices). They are the uncoagulated products of emulsion polymerisation process and are used to coat or impregnate textiles and paper. The individual particles are somewhat less than 1 p,m in diameter. The latex may be coagulated by concentrated acids, polyvalent cations and by dehydration with water-miscible liquids. [Pg.355]

Another family of polyols is the filled polyols.llb There are several types, but die polymer polyols are die most common. These are standard polyether polyols in which have been polymerized styrene, acrylonitrile, or a copolymer thereof. The resultant colloidal dispersions of micrometer-size particles are phase stable and usually contain 20-50% solids by weight. The primary application for these polyols is in dexible foams where the polymer filler serves to increase foam hardness and load-bearing capacity. Other filled polyol types diat have been developed and used commercially (mainly to compete with die preeminent polymer polyols) include the polyurea-based PEID (polyhamstoff dispersion) polyols and the urethane-based PIPA (poly isocyanate polyaddition) polyols. [Pg.213]

In Figure 12a (Pd Pt = 1 2) and 12b (Pd Pt = 1 1), only the spectral feature of CO adsorbed on the Pt atoms, i.e., a strong band at 2068 cm and a very weak broad band at around 1880 cm was observed, while that derived from CO adsorbed on Pd atoms at 1941 cm is completely absent, which proved that the Pd-core has been completely covered by a Pt-shell. Recently we also characterized Au-core/Pd-shell bimetallic nanoparticles by the CO-IR [144]. Reduction of two different precious metal ions by refluxing in ethanol/ water in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) gave a colloidal dispersion of core/shell structured bimetallic nanoparticles. In the case of Pd and Au ions, the bimetallic nanoparticles with a Au-core/Pd-shell structure are usually produced. In contrast, it is difficult to prepare bimetallic nanoparticles with the inverted core/shell, i.e., Pd-core/Au-shell structure. A sacrificial hydrogen strategy is useful to construct the inverted core/shell structure, where the colloidal dispersions of Pd cores are treated with hydrogen and then the solution of the second element, Au ions, is slowly... [Pg.64]

In 1989, we developed colloidal dispersions of Pt-core/ Pd-shell bimetallic nanoparticles by simultaneous reduction of Pd and Pt ions in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) [15]. These bimetallic nanoparticles display much higher catalytic activity than the corresponding monometallic nanoparticles, especially at particular molecular ratios of both elements. In the series of the Pt/Pd bimetallic nanoparticles, the particle size was almost constant despite composition and all the bimetallic nanoparticles had a core/shell structure. In other words, all the Pd atoms were located on the surface of the nanoparticles. The high catalytic activity is achieved at the position of 80% Pd and 20% Pt. At this position, the Pd/Pt bimetallic nanoparticles have a complete core/shell structure. Thus, one atomic layer of the bimetallic nanoparticles is composed of only Pd atoms and the core is completely composed of Pt atoms. In this particular particle, all Pd atoms, located on the surface, can provide catalytic sites which are directly affected by Pt core in an electronic way. The catalytic activity can be normalized by the amount of substance, i.e., to the amount of metals (Pd + Pt). If it is normalized by the number of surface Pd atoms, then the catalytic activity is constant around 50-90% of Pd, as shown in Figure 13. [Pg.65]

After our success in preparation of the colloidal dispersions of Pt-core/Pd-shell bimetallic nanoparticles by simultaneous reduction of PdCl2 and H2PtCl6 in refluxing ethanol/water in the presence of poly(V-vinyl-2-pyrroli-done) [15,16] several reports have appeared on the formation of the core/shell-structured bimetallic nanoparticles by simultaneous reactions [5,52,68,183]. [Pg.65]

Polyelectrolytes provide excellent stabilisation of colloidal dispersions when attached to particle surfaces as there is both a steric and electrostatic contribution, i.e. the particles are electrosterically stabilised. In addition the origin of the electrostatic interactions is displaced away from the particle surface and the origin of the van der Waals attraction, reinforcing the stability. Kaolinite stabilised by poly(acrylic acid) is a combination that would be typical of a paper-coating clay system. Acrylic acid or methacrylic acid is often copolymerised into the latex particles used in cement sytems giving particles which swell considerably in water. Figure 3.23 illustrates a viscosity curve for a copoly(styrene-... [Pg.96]

Biodegradable polyester-based nanoparticles have also been studied, especially in the biomedical domain. Like microelectronics, biomedical research follows the rule smaller is better . A typical example of nanoparticles based on the aliphatic polyester engineering by living ROP is provided by the poly(CL-h-GA) copolymers which form stable colloidal dispersions in organic solvents such as toluene and THF without the need of any additional surfactant [27]. The poly(CL-h-GA) particles form a new class of stable non-aqueous dispersions in... [Pg.54]

These Pd colloids dispersed in a poly(acrylic acid) interface were essentially a supported Pd/poly(acrylic acid) nanocomposite and these nanocom-... [Pg.29]

An alcohol reduction method has been applied to the synthesis of polymer-stabilized bimetallic nanoparticles. They have been prepared by simultaneous reduction of the two corresponding metal ions with refluxing alcohol. For example, colloidal dispersions of Pd/Pt bimetallic nanoparticles can be prepared by refluxing the alcohol-water (1 1 v/v) mixed solution of palladium(II) chloride and hexachloro-platinic(IV) acid in the presence of poly(/V-vinyl-2-pyrrolidone) (PVP) at about 90-95°C for 1 h (Scheme 9.1.5) (25). The resulting brownish colloidal dispersions are stable and neither precipitate nor flocculate over a period of several years. Pd/ Pt bimetallic nanoparticles thus obtained have a so-called core/shell structure, which is proved by an EXAFS technique (described in Section 9.1.3.3). [Pg.436]

A colloidal dispersion in which all the dispersed species (droplets, particles) have the same size. Otherwise, the system is heterodisperse (paucidisperse or poly disperse). See Static Mixer. [Pg.384]

In the methodology developed by us [24], the incompatibility of the two polymers was exploited in a positive way. The composites were obtained using a two-step method. In the first step, hydrophilic (hydrophobic) polymer latex particles were prepared using the concentrated emulsion method. The monomer-precursor of the continuous phase of the composite or water, when that monomer was hydrophilic, was selected as the continuous phase of the emulsion. In the second step, the emulsion whose dispersed phase was polymerized was dispersed in the continuous-phase monomer of the composite or its solution in water when the monomer was hydrophilic, after a suitable initiator was introduced in the continuous phase. The submicrometer size hydrophilic (hydrophobic) latexes were thus dispersed in the hydrophobic (hydrophilic) continuous phase without the addition of a dispersant. The experimental observations indicated that the above colloidal dispersions remained stable. The stability is due to both the dispersant introduced in the first step and the presence of the films of the continuous phase of the concentrated emulsion around the latex particles. These films consist of either the monomer-precursor of the continuous phase of the composite or water when the monomer-precursor is hydrophilic. This ensured the compatibility of the particles with the continuous phase. The preparation of poly(styrenesulfonic acid) salt latexes dispersed in cross-linked polystyrene matrices as well as of polystyrene latexes dispersed in crosslinked polyacrylamide matrices is described below. The two-step method is compared to the single-step ones based on concentrated emulsions or microemulsions. [Pg.37]

We have developed new reaction systems based on colloidal dispersions [23, 24], namely highly concentrated water-in-oil (gel) emulsions, which could overcome most of the disadvantages of the aqueoussolvent mixtures such as inactivation of the aldolase and incomplete aldehyde solubilization in the medium. These emulsions are characterized by volume fractions of dispersed phase higher than 0.73 [25] therefore, the droplets are deformed and/or polydisperse, separated by a thin film of continuous phase. Water-in-oil gel emulsions of water/Ci4E4/oil 90/4/6 wt%, where C14E4 is a technical grade poly(oxyethylene) tetradecyl ether surfactant, with an average of four moles of ethylene oxide per surfactant molecule and oil can be octane, decane, dodecane, tetradecane, hexadecane, or squalane, were typically chosen as reaction media [23, 26]. [Pg.301]

Aqueous colloidal dispersions created by template synthesis, principally used for processing polyaniline and poly(ethylenedioxythiophene), PEDOT. [Pg.109]

Churaev, Nikologorodskaya, and co-workers (33) investigated the Brownian and electrophoretic motion of silica hydrosol particles in aqueous solutions of an electrolyte at different concentrations of poly(ethylene oxide) (PEO) in the disperse medium. The adsorption isotherms of PEO on the surface of silica particles were obtained. The thickness of the adsorption layers of PEO was determined as a function of the electrolyte concentration and the pH of the dispersed medium. The results can be used in an analysis of the flocculation and stabilization conditions for colloidal dispersions of silica (with non-ionogenic water-soluble polymers of the PEO type). [Pg.608]

The colloidal dispersions and thin films containing poly-iV-(epoxypropyl)-carbazole (PEPC) and Ag-Au nanoparticles were prepared and investigated by TEM and UV-vis spectroscopy. The interaction between poly-iV-(epoxypropyl)-carbazole and Ag-Au nanoparticles were studied by IR-spectroscopy. It was shown that interaction of nanoparticles and polymer functional groups is determined by the conditions of a polymer addition. [Pg.336]


See other pages where Poly colloidal dispersion is mentioned: [Pg.52]    [Pg.49]    [Pg.213]    [Pg.55]    [Pg.431]    [Pg.431]    [Pg.433]    [Pg.1680]    [Pg.519]    [Pg.30]    [Pg.160]    [Pg.164]    [Pg.205]    [Pg.522]    [Pg.684]    [Pg.160]    [Pg.41]    [Pg.84]    [Pg.213]    [Pg.519]    [Pg.118]    [Pg.531]    [Pg.66]    [Pg.111]    [Pg.171]    [Pg.81]    [Pg.621]    [Pg.915]    [Pg.156]    [Pg.6664]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Poly , colloid

Poly dispersability

© 2024 chempedia.info