Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly coils

Strauss and Williamst have studied coil dimensions of derivatives of poly(4-vinylpyridine) by light-scattering and viscosity measurements. The derivatives studied were poly(pyridinium) ions quaternized y% with n-dodecyl groups and (1 - y)% with ethyl groups. Experimental coil dimensions extrapolated to 0 conditions and expressed relative to the length of a freely rotating repeat unit are presented here for the molecules in two different environments ... [Pg.70]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

The auto-acceleration effect appears most marked with polymers that are insoluble in their monomers. In these circumstances the radical end becomes entrapped in the polymer and termination reactions become very difficult. It has been suggested that, in thermodynamic terms, methyl methacrylate is a relatively poor solvent for poly(methyl methacrylate) because it causes radicals to coil while in solution. The termination reaction is then determined by the rate at which the radical ends come to the surface of the coil and hence become available for mutual termination. [Pg.402]

The drawback of the described adsorbents is the leakage of the bonded phase that may occur after the change of eluent or temperature of operation when the equilibrium of the polymer adsorption is disturbed. In order to prepare a more stable support Dulout et al. [31] introduced the treatment of porous silica with PEO, poly-lV-vinylpyrrolidone or polyvinylalcohol solution followed by a second treatment with an aqueous solution of a protein whose molecular weight was lower than that of the proteins to be separated. Possibly, displacement of the weakly adsorbed coils by the stronger interacting proteins produce an additional shrouding of the polymer-coated supports. After the weakly adsorbed portion was replaced, the stability of the mixed adsorption layer was higher. [Pg.144]

Blout ER, Idelson M (1956) Polypeptides VI. Poly-alpha-glutamic acid preparation and helix-coil conversions. J Am Chem Soc 78 497-498... [Pg.25]

Historically, after the development of oligopeptide-based vesicles, several groups developed and characterized vesicles using polypeptide hybrid systems consisting of polypeptide and synthetic polymer blocks [17-19]. Soon thereafter, vesicles formed entirely from polypeptides, such as poly(L-lysine)-h-poly(L-leucine) and poly(L-lysine)-h-poly(L-glutamate), were developed [20, 21]. This review will focus on recent developments in the formation of vesicles composed of polypeptide hybrid or polypeptide systems, as well as the potential promise of these systems as effective dmg delivery vehicles. A specific example of a polypeptide-based vesicle is shown in Fig. 1, where the hydrophobic segment is a-helical and the hydrophilic segment is a random coil. [Pg.120]

Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society... Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society...
Vandermeulen GWM, Tziatzios C, Klok HA (2003) Reversible self-organization of poly (ethylene glycol)-based hybrid block copolymers mediated by a de novo four- stranded alpha-helical coiled coil motif Macromolecules 36 4107 114... [Pg.167]

Figure 11a shows a force-distance profile measnred for poly(L-glutamic acid) brushes (2C18PLGA(44)) in water (pH = 3.0, 10 M HNO3) deposited at 40 mN/m from the water subphase at pH = 3.0. The majority of peptides are in the forms of an a-helix (38% determined from the amide I band) and a random coil. Two major regions are clearly seen in... [Pg.11]

Hyperbranched poly(ethyl methacrylate)s prepared by the photo-initiated radical polymerization of the inimer 13 were characterized by GPC with a lightscattering detector [51]. The hydrodynamic volume and radius of gyration (i g) of the resulting hyperbranched polymers were determined by DLS and SAXS, respectively. The ratios of Rg/R are in the range of 0.75-0.84, which are comparable to the value of hard spheres (0.775) and significantly lower than that of the linear unperturbed polymer coils (1.25-1.37). The compact nature of the hyperbranched poly(ethyl methacrylate)s is demonstrated by solution properties which are different from those of the linear analogs. [Pg.17]

If 0.6 N lithium bromide is added to the solution of the polyelectrolyte and also to the solvent on the opposite side of the osmometer membrane, the lowermost set of points in Fig. 145 (lower and left scales) is observed. The anion concentration inside and outside the coil is now so similar that there is little tendency for the bromide ions belonging to the polymer to migrate outside the coil. Hence the osmotic pressure behaves normally in the sense that each poly electrolyte molecule contributes essentially only one osmotic unit. The izjc intercept is lower than that for the parent poly-(vinylpyridine) owing to the increase in molecular weight through addition of a molecule of butyl bromide to each unit. [Pg.634]

The conformations adopted by polyelectrolytes under different conditions in aqueous solution have been the subject of much study. It is known, for example, that at low charge densities or at high ionic strengths polyelectrolytes have more or less randomly coiled conformations. As neutralization proceeds, with concomitant increase in charge density, so the polyelectrolyte chain uncoils due to electrostatic repulsion. Eventually at full neutralization such molecules have conformations that are essentially rod-like (Kitano et al., 1980). This rod-like conformation for poly(acrylic acid) neutralized with sodium hydroxide in aqueous solution is not due to an increase in stiffness of the polymer, but to an increase in the so-called excluded volume, i.e. that region around an individual polymer molecule that cannot be entered by another molecule. The excluded volume itself increases due to an increase in electrostatic charge density (Kitano et al., 1980). [Pg.46]

In a study of the transition in conformation from random coil to stiff rod by poly(acrylic acid), it was found that the point of transition depended on a number of factors, including the nature of the solvent, the temperature, the particular counterion used and the degree of dissociation (Klooster, van der Trouw Mandel, 1984). [Pg.46]

Random coil conformations can range from the spherical contracted state to the fully extended cylindrical or rod-like form. The conformation adopted depends on the charge on the polyion and the effect of the counterions. When the charge is low the conformation is that of a contracted random coil. As the charge increases the chains extend under the influence of mutually repulsive forces to a rod-like form (Jacobsen, 1962). Thus, as a weak polyelectrolyte acid is neutralized, its conformation changes from that of a compact random coil to an extended chain. For example poly(acrylic acid), degree of polymerization 1000, adopts a spherical form with a radius of 20 nm at low pH. As neutralization proceeds the polyion first extends spherically and then becomes rod-like with a maximum extension of 250 nm (Oosawa, 1971). These pH-dependent conformational changes are important to the chemistry of polyelectrolyte cements. [Pg.58]

This ratio is related linearly to the degree of polymerization n. In the case of a poly(acrylic acid) where n = 1000 and /> = 20 nm, this ratio works out at 35. Thus, many of the counterions must enter the region of the polyion. Even when 90 % of the counterions are within the polyion this ratio is still high with a value of 3-5. A similar calculation for the rod-like random coil gives an energy ratio of 26 and similar arguments apply. [Pg.61]

The behaviour in solution of the first type of polyions compared with that of uncharged molecules is more involved in that the coil expansion is affected not only by the solvent but also by the electric field formed by the polyion itself, by the counterions and by the ions of other low-molecular-weight electrolytes, if present in the solution. Infinite charge dilution cannot be achieved by diluting the poly electrolyte solution, as a local high-intensity... [Pg.86]

We now report that in the region of the absorption band the flow linear dichroism of a solution of 1 is positive (Fig. 3). Assuming that the nature of the flow orientation is of the usual kind, i.e., that the polymer chains in a random coil conformation which dominates in solution (34) tend to align with the flow direction, this observation provides additional support for the absolute assignment of the transition moment direction along the chain direction, even in solution. Similar conclusions based on polarization studies on a stretched film of poly(di-n-hexyl silane) have recently been reported (36). [Pg.66]


See other pages where Poly coils is mentioned: [Pg.539]    [Pg.323]    [Pg.303]    [Pg.487]    [Pg.519]    [Pg.471]    [Pg.422]    [Pg.493]    [Pg.541]    [Pg.566]    [Pg.176]    [Pg.13]    [Pg.13]    [Pg.80]    [Pg.22]    [Pg.124]    [Pg.128]    [Pg.128]    [Pg.135]    [Pg.154]    [Pg.157]    [Pg.145]    [Pg.516]    [Pg.144]    [Pg.619]    [Pg.46]    [Pg.21]    [Pg.190]    [Pg.410]    [Pg.421]    [Pg.430]    [Pg.134]    [Pg.116]    [Pg.87]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Poly coil helix transition

Poly coiled-coil structures

© 2024 chempedia.info