Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyelectrolytes acid

Random coil conformations can range from the spherical contracted state to the fully extended cylindrical or rod-like form. The conformation adopted depends on the charge on the polyion and the effect of the counterions. When the charge is low the conformation is that of a contracted random coil. As the charge increases the chains extend under the influence of mutually repulsive forces to a rod-like form (Jacobsen, 1962). Thus, as a weak polyelectrolyte acid is neutralized, its conformation changes from that of a compact random coil to an extended chain. For example poly(acrylic acid), degree of polymerization 1000, adopts a spherical form with a radius of 20 nm at low pH. As neutralization proceeds the polyion first extends spherically and then becomes rod-like with a maximum extension of 250 nm (Oosawa, 1971). These pH-dependent conformational changes are important to the chemistry of polyelectrolyte cements. [Pg.58]

Many acids can donate more than one proton. Examples are H2CO3, H3PO4, and [Al(H20)6l. These acids are referred to as polyprotic acids. Similarly, bases that can accept more than one proton, for example, OH , C03, a.nd NH, are polyprotic bases. Many important substances, for example, proteins or poly aery lie acids, so-called polyelectrolytic acids or bases, contain a large number of acidic or basic groups. [Pg.92]

Traditionally, soil humic substances have been defined by the fact they are soluble in 0.1 N NaOH. Aquatic humic substances, however, are operationally defined as polyelectrolytic acids that can be isolated from water by sorption onto XAD or weak base-ion exchange resins, for example (Thurman 1985). They are nonvolatile, have molecular weights from about 500 to 5000 g/mol, and a molar composition of about 50% C, 4 to 5% H, 35 to 40% O, and 1% N. [Pg.161]

Two inorganic water-soluble polymers, both polyelectrolytes in their sodium salt forms, have been known for some time poly(phosphoric acid) (12) and poly(siHcic acid) (13). A more exciting inorganic water-soluble polymer with nonionic... [Pg.318]

Monovalent cations are good deflocculants for clay—water sHps and produce deflocculation by a cation exchange process, eg, Na" for Ca ". Low molecular weight polymer electrolytes and polyelectrolytes such as ammonium salts (see Ammonium compounds) are also good deflocculants for polar Hquids. Acids and bases can be used to control pH, surface charge, and the interparticle forces in most oxide ceramic—water suspensions. [Pg.307]

Water-soluble polymers and polyelectrolytes (e.g., polyethylene glycol, polyethylene imine polyacrylic acid) have been used success-hilly in protein precipitations, and there has been some success in affinity precipitations wherein appropriate ligands attached to polymers can couple with the target proteins to enhance their aggregation. Protein precipitation can also be achieved using pH adjustment, since proteins generally exhibit their lowest solubility at their isoelectric point. Temperature variations at constant salt concentration allow for frac tional precipitation of proteins. [Pg.2060]

Usually the acid-base properties of poly electrolyte are studied by potentiometric titrations. However it is well known, that understanding of polyelectrolyte properties in solution is based on the knowledge of the thermodynamic properties. Up to now, there is only a small number of microcalorimetry titrations of polyelectrolyte solutions published. Therefore we carried out potentiometric and microcalorimetric titrations of hydrochloric form of the linear and branched polyamines at 25°C and 65°C, to study the influence of the stmcture on the acid-base properties. [Pg.148]

In the present work it was studied the dependence of analytical characteristics of the composite SG - polyelectrolyte films obtained by sol-gel technique on the content of non-ionic surfactant in initial sol. Triton X-100 and Tween 20 were examined as surfactants polystyrene sulfonate (PSS), polyvinyl-sulfonic acid (PVSA) or polydimethyl-ammonium chloride (PDMDA) were used as polyelectrolytes. The final films were applied as modificators of glass slides and pyrolytic graphite (PG) electrode surfaces. [Pg.306]

SG sols were synthesized by hydrolysis of tetraethyloxysilane in the presence of polyelectrolyte and surfactant. Poly (vinylsulfonic acid) (PVSA) or poly (styrenesulfonic acid) (PSSA) were used as cation exchangers, Tween-20 or Triton X-100 were used as non- ionic surfactants. Obtained sol was dropped onto the surface of glass slide and dried over night. Template extraction from the composite film was performed in water- ethanol medium. The ion-exchange properties of the films were studied spectrophotometrically using adsorption of cationic dye Rhodamine 6G or Fe(Phen) and potentiometrically by sorption of protons. [Pg.317]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

The parameter n reflects the measure of deviation of the system from the behavior of the monomeric acid where n = 1, i.e., it characterizes the degree of interaction between the neighboring functional groups of the macroion. The value of n depends on the structure of the polyelectrolyte and the nature of the counterion pK = pK0 — log (1 — a)/a is the negative decadic logarithm of the effective dissociation constant of the carboxylic CP depending on a. [Pg.12]

High sorption capacities with respect to protein macromolecules are observed when highly permeable macro- and heteroreticular polyelectrolytes (biosorbents) are used. In buffer solutions a typical picture of interaction between ions with opposite charges fixed on CP and counterions in solution is observed. As shown in Fig. 13, in the acid range proteins are not bonded by carboxylic CP because the ionization of their ionogenic groups is suppressed. The amount of bound protein decreases at high pH values of the solution because dipolar ions proteins are transformed into polyanions and electrostatic repulsion is operative. The sorption maximum is either near the isoelectric point of the protein or depends on the ratio of the pi of the protein to the pKa=0 5 of the carboxylic polyelectrolyte [63]. It should be noted that this picture may be profoundly affected by the mechanism of interaction between CP and dipolar ions similar to that describedby Eq. (3.7). [Pg.22]

The reactivation of enzymes (after their partial inactivation in an acid medium) upon passing into a medium of pH 8 is also of great importance for oral use (Fig. 25). Enzymes immobilized in crosslinked polyelectrolytes are characterized by a structural memory even after considerable inactivation. Under changed conditions, this leads to a considerable or almost complete reactivation of the enzyme, whereas in the reactivation of a free enzyme in solution under similar conditions the enzymatic activity is restored on a lower level. [Pg.35]

Photoresponsive polyelectrolytes tethered with a photochemical functional group were first reported in 1964 by Lovrien and Waddington [24] who prepared copolymers of iV-azobenzeneacrylamide and acrylic or methacrylic acid (1). [Pg.54]

This potential reflects itself in the titration curves of weak polyacids such as poly(acrylic acid) and poly(methacrylic acid) [32]. Apparent dissociation constants of such polyacids change with the dissociation degree of the polyacid because the work to remove a proton from the acid site into the bulk water phase depends on the surface potential of the polyelectrolyte. [Pg.55]

A merocyanine dye, l-ethyl-4-(2-(4-hydroxyphenyl)ethenyl)pyridinium bromide (M-Mc, 2), exhibits a large spectral change according to the acid-base equilibrium [40, 41]. The equilibrium is affected by the local electrostatic potential and the polarity of the microenvironment around the dye. Hence, this dye is useful as a sensitive optical probe for the interfacial potential and polarity when it is covalently attached to the polyelectrolyte backbone. [Pg.57]

As has been described in Chapter 4, random copolymers of styrene (St) and 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) form a micelle-like microphase structure in aqueous solution [29]. The intramolecular hydrophobic aggregation of the St residues occurs when the St content in the copolymer is higher than ca. 50 mol%. When a small mole fraction of the phenanthrene (Phen) residues is covalently incorporated into such an amphiphilic polyelectrolyte, the Phen residues are hydrophobically encapsulated in the aggregate of the St residues. This kind of polymer system (poly(A/St/Phen), 29) can be prepared by free radical ter-polymerization of AMPS, St, and a small mole fraction of 9-vinylphenanthrene [119]. [Pg.84]

Another application for polyelectrolyte materials is in the forming plastics with unusual physical properties with regard to adhesion. The incorporation of small amounts of organic acid materials into polyolefin structures results in materials that have excellent adhesion to metals, paper, glass, and a variety... [Pg.268]

The salt effect is very strong in polyconjugated polyelectrolytes. Figure 15 is a graph of the proton dissociation energy vs. the dissociation degree of PPA of different structures. Also, the graphs for poly(methacrylic acid) and a copolymer... [Pg.29]

Fig. 15. Energy of proton dissociation (Ez) from Z times ionized polyelectrolyte molecules as function of the degree of dissociation (a). (A) - PPAL (1), PPAS (2), PPA (3), polyfmethacrylic acid) (4), copolymer of acrylic acid with ethylenesulfonic acid (50 50) in aqueous solutions (5), (B) - PPAL (1), PPAS (2), PPA in the presence of NaCl (3) ( ) INaClj = 0 (X) fNaCll = 0.25 mmol/1 (o) 0.50 mmol/1... Fig. 15. Energy of proton dissociation (Ez) from Z times ionized polyelectrolyte molecules as function of the degree of dissociation (a). (A) - PPAL (1), PPAS (2), PPA (3), polyfmethacrylic acid) (4), copolymer of acrylic acid with ethylenesulfonic acid (50 50) in aqueous solutions (5), (B) - PPAL (1), PPAS (2), PPA in the presence of NaCl (3) ( ) INaClj = 0 (X) fNaCll = 0.25 mmol/1 (o) 0.50 mmol/1...
Synthetic Polyelectrolytes as Models of Nucleic Acids and Esterases... [Pg.135]

Anionic Polyelectrolytes Containing Nucleic Acid Bases.136... [Pg.135]


See other pages where Polyelectrolytes acid is mentioned: [Pg.184]    [Pg.2200]    [Pg.278]    [Pg.184]    [Pg.2200]    [Pg.278]    [Pg.320]    [Pg.561]    [Pg.502]    [Pg.228]    [Pg.519]    [Pg.278]    [Pg.472]    [Pg.2057]    [Pg.372]    [Pg.518]    [Pg.6]    [Pg.13]    [Pg.13]    [Pg.158]    [Pg.266]    [Pg.30]    [Pg.135]    [Pg.136]    [Pg.136]   


SEARCH



© 2024 chempedia.info