Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly brushes polymerization

Keywords. Poly(macromonomers), Graft copolymers, Comb, Star, Brush, Polymeric microspheres... [Pg.129]

A combination of TEMPO living free radical (LFRP) and anionic polymerization was used for the synthesis of block-graft, block-brush, and graft-block-graft copolymers of styrene and isoprene [201]. The block-graft copolymers were synthesized by preparing a PS-fo-poly(styrene-co-p-chloromethylstyrene) by LFRP [Scheme 110 (1)], and the subsequent re-... [Pg.123]

Based on this approach Schouten et al. [254] attached a silane-functionalized styrene derivative (4-trichlorosilylstyrene) on colloidal silica as well as on flat glass substrates and silicon wafers and added a five-fold excess BuLi to create the active surface sites for LASIP in toluene as the solvent. With THF as the reaction medium, the BuLi was found to react not only with the vinyl groups of the styrene derivative but also with the siloxane groups of the substrate. It was found that even under optimized reaction conditions, LASIP from silica and especially from flat surfaces could not be performed in a reproducible manner. Free silanol groups at the surface as well as the ever-present impurities adsorbed on silica, impaired the anionic polymerization. However, living anionic polymerization behavior was found and the polymer load increased linearly with the polymerization time. Polystyrene homopolymer brushes as well as block copolymers of poly(styrene-f)lock-MMA) and poly(styrene-block-isoprene) could be prepared. [Pg.414]

Recently, Quirk and Mathers [264] performed LASIP of isoprene on silicon wafers. A chlorodimethylsilane-functionalized diphenylefhene (DPE) was coupled onto the surface and lithiated with n-BuLi to form the initiating species. The living poly(isoprene) (PI) was end- functionalized with ethylene oxide. A brush thickness of 5 nm after two days of polymerization (9.5 nm after four days) was obtained in contrast to a polymer layer thickness of 1.9 nm by the grafting onto method using a telechelic silane functionahzed PI. [Pg.417]

The first report on living carbocationic surface-initiated polymerization (LCSIP) using a defined surface modification is by Vidal and Kennedy [268-270]. They prepared poly(isobutene) (PIB) brushes from silica surfaces using a silane functionalized benzylchloride activated by a Lewis acid. [Pg.417]

The brash layer thickness (dry collapsed state) obtained after seven days of polymerization time and successive soxhlet extraction was found to be approx. 10 nm and very uniform ( 0.3 nm). The uniform thickness values are provided by the homogeneous initiation, polymerization and termination reaction. Meanwhile poly(2-oxazoline) homopolymers brushes with layer thicknesses of 20 to 30 nm can be obtained [275]. [Pg.418]

Poly(methyl methacrylate) with a variable degree of polymerization anchored to silica surfaces was synthesized following the room temperature ATRP polymerization scheme described earlier [45,46]. In the main part of Fig. 25 we plot the variation of the PMMA brush thickness after drying (measured by SE) as a function of the position on the substrate. Thickness increases continuously from one end of the substrate to the other. Since the density of polymerization initiators is (estimated to be 0.5 chains/nm ) uniform on the substrate, we ascribe the observed change in thickness to different lengths of polymer chains grown at various positions. [Pg.88]

Fig. 26 Dry thickness of poly(acryl amide) as a function of the position on the silica substrate prepared by slow ( ) and fast ( ) removal of the polymerization solution by utilizing the method depicted in Fig. 24. The inset shows the dry poly(acryl amide) thickness as a function of the polymerization time. Note that both data sets collapse on a single curve at short polymerization times. Regardless of the drain speed, the brush thickness increases linearly at short polymerization times and levels off at longer polymerization times. The latter behavior is associated with premature termination of the growing polymers... Fig. 26 Dry thickness of poly(acryl amide) as a function of the position on the silica substrate prepared by slow ( ) and fast ( ) removal of the polymerization solution by utilizing the method depicted in Fig. 24. The inset shows the dry poly(acryl amide) thickness as a function of the polymerization time. Note that both data sets collapse on a single curve at short polymerization times. Regardless of the drain speed, the brush thickness increases linearly at short polymerization times and levels off at longer polymerization times. The latter behavior is associated with premature termination of the growing polymers...
In this review, synthesis of block copolymer brushes will be Hmited to the grafting-from method. Hussemann and coworkers [35] were one of the first groups to report copolymer brushes. They prepared the brushes on siUcate substrates using surface-initiated TEMPO-mediated radical polymerization. However, the copolymer brushes were not diblock copolymer brushes in a strict definition. The first block was PS, while the second block was a 1 1 random copolymer of styrene/MMA. Another early report was that of Maty-jaszewski and coworkers [36] who reported the synthesis of poly(styrene-h-ferf-butyl acrylate) brushes by atom transfer radical polymerization (ATRP). [Pg.129]

During the last 5 years, there have been several reports of multiblock copolymer brushes by the grafting-from method. The most common substrates are gold and silicon oxide layers but there have been reports of diblock brush formation on clay surfaces [37] and silicon-hydride surfaces [38]. Most of the newer reports have utilized ATRP [34,38-43] but there have been a couple of reports that utilized anionic polymerization [44, 45]. Zhao and co-workers [21,22] have used a combination of ATRP and nitroxide-mediated polymerization to prepare mixed poly(methyl methacrylate) (PMMA)Zpolystyrene (PS) brushes from a difunctional initiator. These Y-shaped brushes could be considered block copolymers that are surface immobilized at the block junction. [Pg.130]

The first diblock copolymer brushes synthesized in our group were made by a combination of carbocationic polymerization and ATRP (Scheme 1) [46]. Zhao and co-workers [47] synthesized diblock copolymer brushes consisting of a tethered chlorine-terminated PS block, produced using carbocationic polymerization, on top of which was added a block of either PMMA, poly(methyl acrylate) (PMA) or poly((Ar,M -dimethylamino)ethyl methacrylate) (PDMAEMA), synthesized using ATRP. The thickness of the outer poly(meth)acrylate block was controlled by adding varying amounts of free initiator to the ATRP media. It has been reported that the addition of free initiator is required to provide a sufficiently high concentration of deactivator, which is necessary for controlled polymerizations from the sur-... [Pg.130]

To make further use of the azo-initiator, tethered diblock copolymers were prepared using reversible addition fragmentation transfer (RAFT) polymerization. Baum and co-workers [51] were able to make PS diblock copolymer brushes with either PMMA or poly(dimethylacrylamide) (PDMA) from a surface immobihzed azo-initiator in the presence of 2-phenylprop-2-yl dithiobenzoate as a chain transfer agent (Scheme 3). The properties of the diblock copolymer brushes produced can be seen in Table 1. The addition of a free initiator, 2,2 -azobisisobutyronitrile (AIBN), was required in order to obtain a controlled polymerization and resulted in the formation of free polymer chains in solution. [Pg.132]

Baum et al. apphed RAFT polymerization to synthesize brushes of PS, PMMA, poly(Nd -dimethylacrylamide) (PDMA), and their copolymers on azo-initiator-bound sihcate surfaces [127]. 2-Phenylprop-2-yl dithiobenzoate was added as a free (unboimd) RAFT agent to control the graft polymerization. Because of a very low concentration of surface-bound initiator, a free... [Pg.16]

As with normal hydrocarbon-based surfactants, polymeric micelles have a core-shell structure in aqueous systems (Jones and Leroux, 1999). The shell is responsible for micelle stabilization and interactions with plasma proteins and cell membranes. It usually consists of chains of hydrophilic nonbiodegradable, biocompatible polymers such as PEO. The biodistribution of the carrier is mainly dictated by the nature of the hydrophilic shell (Yokoyama, 1998). PEO forms a dense brush around the micelle core preventing interaction between the micelle and proteins, for example, opsonins, which promote rapid circulatory clearance by the mononuclear phagocyte system (MPS) (Papisov, 1995). Other polymers such as pdty(sopropylacrylamide) (PNIPA) (Cammas etal., 1997 Chung etal., 1999) and poly(alkylacrylicacid) (Chen etal., 1995 Kwon and Kataoka, 1995 Kohorietal., 1998) can impart additional temperature or pH-sensitivity to the micelles, and may eventually be used to confer bioadhesive properties (Inoue et al., 1998). [Pg.310]

Thermally responsive polymers, such as poly( V-isopropyl acrylamide) (NI-PAm), have also been studied extensively for applications related to those previously discussed [112], De las Heras et al. described the synthesis and patterning of NIPAm brushes on SAMs and their subsequent performance during temperature-dependent adhesion assays of BSA and Streptococcus mutans (Fig. 7). The authors employed p.CP to pattern features of hydrophobic hexadecanethiol and backfilled the surface with an initiator-functionalized alkanethiol. Polymer brushes were grown via surface-initiated atom transfer radical polymerization (ATRP). FITC-BSA was then... [Pg.115]

So far, there have been only few reports about the synthesis of amphipolar polymer brushes, i.e. with amphiphilic block copolymer side chains. Gna-nou et al. [115] first reported the ROMP of norbornenoyl-endfunctionalized polystyrene-f -poly(ethylene oxide) macromonomers. Due to the low degree of polymerization, the polymacromonomer adopted a star-like rather than a cylindrical shape. Schmidt et al. [123] synthesized amphipolar cylindrical brushes with poly(2-vinylpyridine)-block-polystyrene side chains via radical polymerization of the corresponding block macromonomer. A similar polymer brush with poly(a-methylstyrene)-Wocfc-poly(2-vinylpyridine) side chains was also synthesized by Ishizu et al. via radical polymerization [124]. Using the grafting from approach, Muller et al. [121, 125] synthesized... [Pg.201]

Recently, core-shell type microgels, which contain a hydrophobic core and a hydrophilic thermosensitive shell, have become attractive for scientists because such systems can combine the properties characteristic of both the core and the shell [53], We have prepared core-shell microgel particles consisting of a poly(styrene) core onto which a shell of polyCA-isopropylacrylamide) (PS-PNIPA) has been affixed in a seeded emulsion polymerization [54-56], In this case, the ends of the crosslinked PNIPA chains are fixed to a solid core, which defines a solid boundary of the network. In this respect, these core-shell latex particles present crosslinked polymer brushes on defined spherical surfaces. The solvent quality can be changed from good solvent conditions at room temperature to poor solvent conditions at a temperature... [Pg.133]


See other pages where Poly brushes polymerization is mentioned: [Pg.282]    [Pg.11]    [Pg.197]    [Pg.198]    [Pg.202]    [Pg.135]    [Pg.423]    [Pg.428]    [Pg.73]    [Pg.74]    [Pg.78]    [Pg.92]    [Pg.128]    [Pg.9]    [Pg.16]    [Pg.17]    [Pg.31]    [Pg.119]    [Pg.131]    [Pg.14]    [Pg.601]    [Pg.38]    [Pg.5]    [Pg.133]    [Pg.134]    [Pg.206]    [Pg.201]    [Pg.110]    [Pg.148]    [Pg.149]    [Pg.155]    [Pg.68]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Poly , polymeric

Polymeric brushes

Polymerization poly

© 2024 chempedia.info