Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly aromatics transesterification

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]

Initiators such as (306) initiate the ROP of CL to form telechelic triblock diols.478 Molecular weights approach theoretical values with polydispersities <1.3 and no significant level of transesterification was detected at up to 95% conversions. Alternative bimetallic samarium initiators have been used to synthesize aromatic, cumulene and amine/imine link-functionalized poly(lactones).479... [Pg.48]

Physical properties are related to ester-segment structure and concentration in thermoplastic polyether-ester elastomers prepared hy melt transesterification of poly(tetra-methylene ether) glycol with various diols and aromatic diesters. Diols used were 1,4-benzenedimethanol, 1,4-cyclo-hexanedimethanol, and the linear, aliphatic a,m-diols from ethylene glycol to 1,10-decane-diol. Esters used were terephthalate, isophthalate, 4,4 -biphenyldicarboxylate, 2,6-naphthalenedicarboxylate, and m-terphenyl-4,4"-dicarboxyl-ate. Ester-segment structure was found to affect many copolymer properties including ease of synthesis, molecular weight obtained, crystallization rate, elastic recovery, and tensile and tear strengths. [Pg.133]

Several fundamental studies have shown the importance of monomer sequence distribution on mesophase behavior (26). Simply changing the direction of ester linkages in a chain affects the transition temperatures, the range of the mesophase stability and, in some cases, even the mesophase texture (2Z). Polyester chains are susceptible to transesterification, which raises the question of which sequence structure is actually responsible for the properties observed for a given polymer. A recent study of aromatic LC polymers by neutron scattering indicates that transesterification occurs in the mesophase at rates twice that in poly(ethylene terephthalate) (28). Such behavior has also been observed to occur in other aromatic polyesters where rapid sequence redistribution was detected by nmr, see for example, the chapters by Jin and Economy et al. The temperature dependence of this effect has not been fully explored, and it may not be as pronounced in those polymers which exhibit mesophase behavior at lower temperatures, for example, those with aliphatic spacers. [Pg.7]

Gopakumar et al. [10] reported the in situ compatibilization of poly(phenylene sulfide) (PPS)/wholly aromatic thermotropic liquid crystalline polymer (TLCP) Vectra A950 blends by reactive extrusion. The authors prepared the in situ compatibilized PPS/TLCP blends in a twin-screw extruder by reactive blending of PPS and TLCP in the presence of dicarboxyl-terminated poly(phenylene sulfide) (DCTPPS). Block copolymer was formed during reactive blending, by transesterification reaction between carboxyl... [Pg.9]

Among the high molecular weight aliphatic-aromatic polyesters, the highest commercial volume material is poly(ethylene terephthalate). Most of it is prepared from dimethylene terephtha-late and ethylene glycol by a transesterification reaction ... [Pg.290]

Blends of aliphatic-aromatic copolyesters with poly(ethylene-co-vinyl acetate) blends have higher melt strength than the aliphatic-aromatic copolyester as such and exhibit an increased melt strength and a better thermal processability (50). An example of a branched basic aliphatic-aromatic material is made from poly(tetramethylene adi-pate-co-terephthalate) by transesterification. As branching agents pentaerythritol or pyromellitic dianhydride may be used. The... [Pg.104]

TEEEs are typically produced by condensation polymerization of an aromatic dicarboxylic acid or ester with a low MW aliphatic diol and a polyalkylene ether glycol. Reaction of the first two components leads to the hard segment, and the soft segment is the product of the diacid or diester with a long-chain glycol. This can be described as a melt transesterification of an aromatic dicarboxylic acid, or preferably its dimethyl ester, with a low MW poly(alklylene glycol ether) plus a short-chain diol. ... [Pg.206]

Poly(butylene adipate-co-succinate)/poly(butylene terephthalate) copolyesters prepared by the transesterification reaction of PBAS and PBT were characterized [93]. The biodegradability of copolyesters depended on the terephthalate unit in the composition and average block length of the aromatic unit. [Pg.146]

Poly(ethylene terephthalate) (abbreviated PET or PETE) is a semi-aromatic thermoplastic polyester obtained by condensation reaction of difunctional reactants and well-known for more than 60 years. PET is commonly produced by esterification reaction between terephthalic acid and ethylene glycol with water as a byproduct or by transesterification reaction between ethylene glycol and dimethyl terephthalate with methanol as a byproduct. In order to obtain high molar masses polymers, solid-state polymerization is carried out. PET is one of the most important industrial polymers because of its excellent properties as tensile impact strength, chemical resistance, processability, clarity, thermal stability and others. The main applications of PET are fibers for textiles, films and bottles. Annual world PET production is around 60 millions tons. PET materials were manufactured using extrusion, injection molding and blow molding techniques. [Pg.97]

The biocompatible dimerized fatty acid (DFA)-based poly(aliphatic-aromatic ester) elastomers (PED) have been synthesized and studied for biomedical applications by El Fray et al. [194-200]. The design of nanostructured elastomeric biomaterials (mimicking biological materials) has been realized by using renewable resources, i.e., DFA. They are prepared by transesterification and polycondensation from the melt (see Section 7). The exceptional properties of DFA, e.g., excellent resistance to oxidative and thermal degradation, allow the preparation of PEDs without the use of thermal (often irritating) stabilizers. This is a particularly important feature making these polymers environmentally friendly and additive-free. What is equally important, by the use of the same method and stabilizer-free conditions, it was possible to prepare specially modified PED copolymers with an increased surface hydrophobicity. [Pg.102]


See other pages where Poly aromatics transesterification is mentioned: [Pg.41]    [Pg.1716]    [Pg.307]    [Pg.137]    [Pg.216]    [Pg.112]    [Pg.242]    [Pg.17]    [Pg.13]    [Pg.87]    [Pg.118]    [Pg.7169]    [Pg.131]    [Pg.144]    [Pg.147]    [Pg.189]    [Pg.176]    [Pg.435]    [Pg.56]    [Pg.201]    [Pg.150]   
See also in sourсe #XX -- [ Pg.43 , Pg.95 ]




SEARCH



Aromatic poly

Poly aromatics

Poly aromatization

Poly transesterification

Transesterifications

© 2024 chempedia.info