Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pollution leaching

In the case of an organic pollutant or mixtures of organic pollutants leached from SWMs, the nature of the functional groups of such pollutants will influence their characteristics and their abilities to interact with solid phase constituents. For instance, depending on how these functional groups are situated, they will determine the mechanisms of interaction, persistence, and ultimate fate of such compounds in both surface and subsurface environments. The following is a summary of some important functional groups and their effects on the chemical interactions between pollutant-solid phase constituents. [Pg.148]

The Dutch magazine KGK (Klei Glas Keramiek = Clay Glass Ceramics) reports the results of an extensive physical and chemical research of five clay deposits in the area between the rivers Rhine and river Meuse in the Netherlands. The chemical part involved both main and trace elements. The analysis of trace elements was carried out within the framework of an Act on the requirements for the environmental quality of soil materials in relation to, for example, the chemical composition of baked clay products. One of the things which have to be investigated in the baked product is the degree in which incorporated pollutions leach out (are extracted) under the influence of the weather, and especially under the influence of water. The analysis of one of the five deposits is represented in table 8.2. [Pg.113]

Fig. 3. Heavy metal pollutants leached during sequential batch extractions of solidified/stabilized hazardous wastes... Fig. 3. Heavy metal pollutants leached during sequential batch extractions of solidified/stabilized hazardous wastes...
Landfills contain a tremendous amount of plastic waste. As the plastics degrade, pollutants leach into the soil and gases escape into... [Pg.7]

Systematic-judgmental sampling scheme for monitoring the leaching of pollutants from a landfill. Sites where samples are collected are represented by the solid dots. [Pg.186]

Historically, soda ash was produced by extracting the ashes of certain plants, such as Spanish barilla, and evaporating the resultant Hquor. The first large scale, commercial synthetic plant employed the LeBlanc (Nicolas LeBlanc (1742—1806)) process (5). In this process, salt (NaCl) reacts with sulfuric acid to produce sodium sulfate and hydrochloric acid. The sodium sulfate is then roasted with limestone and coal and the resulting sodium carbonate—calcium sulfide mixture (black ash) is leached with water to extract the sodium carbonate. The LeBlanc process was last used in 1916—1917 it was expensive and caused significant pollution. [Pg.522]

LLDPE can be disposed of by landfill or incineration. In landfill, the material is completely inert, degrades very slowly, does not produce gas, and does not leach any pollutants into ground water. When incinerated in commercial or municipal faciHties, LLDPE produces a large amount of heat (the same as heating fuel) and should constitute less than 10% of the total trash. [Pg.404]

Solvent Extraction. Solvent extraction has widespread appHcation for uranium recovery from ores. In contrast to ion exchange, which is a batch process, solvent extraction can be operated in a continuous countercurrent-fiow manner. However, solvent extraction has a large disadvantage, owing to incomplete phase separation because of solubihty and the formation of emulsions. These effects, as well as solvent losses, result in financial losses and a potential pollution problem inherent in the disposal of spent leach solutions. For leach solutions with a concentration greater than 1 g U/L, solvent extraction is preferred. For low grade solutions with <1 g U/L and carbonate leach solutions, ion exchange is preferred (23). Solvent extraction has not proven economically useful for carbonate solutions. [Pg.317]

The ore is ordinarily ground to pass through a ca 1.2-mm (14-mesh) screen, mixed with 8—10 wt % NaCl and other reactants that may be needed, and roasted under oxidising conditions in a multiple-hearth furnace or rotary kiln at 800—850°C for 1—2 h. Temperature control is critical because conversion of vanadium to vanadates slows markedly at ca 800°C, and the formation of Hquid phases at ca 850°C interferes with access of air to the mineral particles. During roasting, a reaction of sodium chloride with hydrous siUcates, which often are present in the ore feed, yields HCl gas. This is scmbbed from the roaster off-gas and neutralized for pollution control, or used in acid-leaching processes at the mill site. [Pg.392]

Air pollution problems and labor costs have led to the closing of older pyrometaHurgical plants, and to increased electrolytic production. On a worldwide basis, 77% of total 2inc production in 1985 was by the electrolytic process (4). In electrolytic 2inc plants, the calcined material is dissolved in aqueous sulfuric acid, usually spent electrolyte from the electrolytic cells. Residual soHds are generally separated from the leach solution by decantation and the clarified solution is then treated with 2inc dust to remove cadmium and other impurities. [Pg.386]

Cement plants in the United States are now carehiUy monitored for compliance with Environmental Protection Agency (EPA) standards for emissions of particulates, SO, NO, and hydrocarbons. AH plants incorporate particulate collection devices such as baghouses and electrostatic precipitators (see Air POLLUTION CONTROL methods). The particulates removed from stack emissions are called cement kiln dust (CKD). It has been shown that CKD is characterized by low concentrations of metals which leach from the CKD at levels far below regulatory limits (63,64). Environmental issues continue to be of concern as the use of waste fuel in cement kilns becomes more widespread. [Pg.295]

Groundwater is vulnerable to pollution by chemicals carried by rainwater, leaching from waste sites or from waste water carrying industrial or agricultural effluent. Treatment of drinking water may remove some, but not all, of these contaminants. Some polycarbonate or metal water pipes that are lined with epoxy resin lacquers may release bisphenol A. [Pg.15]

A useful property of liquids is their ability to dissolve gases, other liquids and solids. The solutions produced may be end-products, e.g. carbonated drinks, paints, disinfectants or the process itself may serve a useful function, e.g. pickling of metals, removal of pollutant gas from air by absorption (Chapter 17), leaching of a constituent from bulk solid. Clearly a solution s properties can differ significantly from the individual constituents. Solvents are covalent compounds in which molecules are much closer together than in a gas and the intermolecular forces are therefore relatively strong. When the molecules of a covalent solute are physically and chemically similar to those of a liquid solvent the intermolecular forces of each are the same and the solute and solvent will usually mix readily with each other. The quantity of solute in solvent is often expressed as a concentration, e.g. in grams/litre. [Pg.26]

Environmental Fate. A portion of releases to land and water will quickly evaporate, although some degradation by microorganisms will occur. Xylene are moderately mobile in soils and may leach into groundwater, where they may persist for many years. Xylenes are VOCs. As such, xylene will react with other atmospheric components, contributing to the formation of ground-level ozone and other air pollutants. [Pg.108]

Rainfall, besides wetting the metal surface, can be beneficial in leaching otherwise deleterious soluble species and this can result in marked decreases in corrosion rate . A recent survey of rainfall analyses for Europe has shown that, with the exception of the UK, the acidity and sulphate content of rainfall markedly increased in the period 1956 to 1966, pH values having fallen by 0 05 to 0-10 units per ann. The exception of the UK may be due to anti-pollution measures introduced in this period. However, even in the UK a pH of 4 is not uncommon for rainfall in industrial areas. The significance of electrolyte solution pH will be discussed in the context of corrosion mechanisms. The remaining cases of electrolyte formation are those in which it exists in equilibrium with air at a relative humidity below 100%. [Pg.341]

For some non-ferrous metals (copper, lead, nickel) the attack by sulphuric acid is probably direct with the formation of sulphates. Lead sulphate is barely soluble and gives good protection. Nickel and copper sulphates are deliquescent but are gradually converted (if not leached away) into insoluble basic sulphates, e.g. Cu Cu(OH)2)3SO4, and the metals are thus protected after a period of active corrosion. For zinc and cadmium the sulphur acids probably act by dissolution of the protective basic carbonate film. This reforms, consuming metal in the process, redissolves, and so on. Zinc and cadmium sulphates are formed in polluted winter conditions whereas in the purer atmospheres of the summer the corrosion products include considerable amounts of oxide and basic carbonate. ... [Pg.343]

Soil reaction (pH) The relationship between the environment and development of acid or alkaline conditions in soil has been discussed with respect to formation of soils from the parent rock materials. Soil acidity comes in part by the formation of carbonic acid from carbon dioxide of biological origin and water. Other acidic development may come from acid residues of weathering, shifts in mineral types, loss of alkaline or basic earth elements by leaching, formation of organic or inorganic acids by microbial activity, plant root secretions, and man-made pollution of the soil, especially by industrial wastes. [Pg.383]

Humans may also be indirectly affected through exposure to increased levels of toxic metals in drinking water and food. Increased levels of toxic metal are a consequence of direct deposition of pollutants into water sources, increased leaching of metal from soils and lake sediments, and increased corrosion of water pipes. [Pg.56]

Sources of land pollution include direct dumping of domestic and industrial solid waste, excessive application of agrochemicals, and indirect contamination resulting from leaks or from leaching of hazardous components from liquid waste disposal sites or from atmospheric fallout. Land may also become contaminated by chemicals processed, stored or dumped at the site, perhaps in the distant past. Such contamination may pose a health risk to workers on the site, those subsequently involved in building, construction or engineering works, or the public (e.g. arising from trespass), and to animals. [Pg.345]


See other pages where Pollution leaching is mentioned: [Pg.110]    [Pg.361]    [Pg.31]    [Pg.110]    [Pg.361]    [Pg.31]    [Pg.185]    [Pg.388]    [Pg.355]    [Pg.546]    [Pg.209]    [Pg.223]    [Pg.153]    [Pg.2214]    [Pg.76]    [Pg.50]    [Pg.44]    [Pg.55]    [Pg.129]    [Pg.111]    [Pg.135]    [Pg.182]    [Pg.183]    [Pg.573]    [Pg.359]    [Pg.187]    [Pg.495]    [Pg.49]    [Pg.428]    [Pg.166]    [Pg.229]    [Pg.33]   
See also in sourсe #XX -- [ Pg.139 , Pg.140 , Pg.155 , Pg.186 , Pg.192 , Pg.196 ]




SEARCH



Leaching of Pollutants from within Particles

Pollutants, leaching

Pollutants, leaching

© 2024 chempedia.info