Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polarity/polarization solvatochromism

Solvatochromism is a colour change brought about by a change in solvent polarity (solvatochromic). [Pg.389]

Spectra of a solvatochromic compound show significant shifts of absorption or emission bands in solvents of different polarities. Solvatochromism is thus a measure of the sensitivity of a compound to environmental changes, expressed by changes of its spectra in solution. It is related with other environment-dependent spectral changes, such... [Pg.1330]

Solvent polarity is one of the most common solvent characteristics that have been used for correlations of rate constants with the nature of the reaction medium. Since relative permittivities and dipole moments did not give satisfactory results, there was a strong need for a microscopic parameter and many attempts have been made to develop empirical solvent parameters that are based on a physical parameter which is sensitive to the solvent polarity. Solvatochromic dyes have been the most successful and particularly Reichardt s t(30) solvent polarity parameter. The latter is based on the transition energy of the longest wavelength solvatochromic absorption band of the betaine dye pyridinium-N-phenoxide (in fact, this is dye number 30 in the first publication ). Its value is given by... [Pg.36]

Solvent Influence. Solvent nature has been found to influence absorption spectra, but fluorescence is substantiaHy less sensitive (9,58). Sensitivity to solvent media is one of the main characteristics of unsymmetrical dyes, especiaHy the merocyanines (59). Some dyes manifest positive solvatochromic effects (60) the band maximum is bathochromicaHy shifted as solvent polarity increases. Other dyes, eg, highly unsymmetrical ones, exhibit negative solvatochromicity, and the absorption band is blue-shifted on passing from nonpolar to highly polar solvent (59). In addition, solvents can lead to changes in intensity and shape of spectral bands (58). [Pg.494]

Another solvatochromic polarity measure, (30), is the transition energy for compound 8, which is 2,6-diphenyl-4-(2,4,6-triphenylpyridinio)phenolate, also referred to as Dimroth-Reichardt s betaine. [Pg.437]

Dimroth et al. introduced 8 as a solvatochromic probe of solvent polarity having absorption in the visible region it shows the largest solvatochromic shift of any substance yet reported. Ey (30) is calculated with Eq. (8-76), like Z. (The peculiar symbolism arose because compound 8 happened to be No. 30 on the list of substances studied by Dimroth et al.) The shift is hypsochromic as solvent polarity is increased. Table 8-16 gives some Ey (30) values. - (30) is linearly... [Pg.437]

Other solvatochromic probes have been proposed. Mukerjee et al. used nitrox-ides for this purpose, finding that their transition energies correlate linearly with Z and t (30). Brooker et al. prepared a polar merocyanine that shows a blue shift... [Pg.437]

The merocyanine dye mentioned above shows solvatochromism, which means that the absorption band maximum of the quinoid form (D form) is sensitive to solvent polarity [40,41]. In Fig. 3, the absorption maximum of the solvatochromic band for M-Mc (a low molecular weight merocyanine analog) is plotted against the dielectric constant of 1,4-dioxane/water mixtures [42]. With the relationship... [Pg.58]

Sodium nitrite, in monomethine thiazolo-cyanine synthesis, 52 Solvatochromism, of neutrocyanines, 75 of selenazole dyes. 251 Solvent, effect in resonance theory, 71 polarity of, in relation with solvatochromism. 75... [Pg.334]

The relative importance of the hafide anion - HO - Cell interactions can be inferred from application of the Taft-Kamlet-Abboud equation to the UV-Vis absorbance data of solvatochromic probes, dissolved in cellulose solutions in different solvent systems, including LiCl/DMAc and LiCl/N-methyl-2-pyrrolidinone [96]. According to this equation, the microscopic polarity measured by the indicator, Ej (indicator), in kcalmol is correlated with the properties of the solvents by Eq. 1 ... [Pg.117]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

Note Solvent classification into groups based on solvent polarity selectivity parameters proton acceptor, proton donor, x dipole interactors) and solvent strength on alumina nd on silica gel 0. Physical constants viscosity (t)), surface tension (y), dielectric constant (8). Solvatochromic polarity parameters 7, j.(30) and Ej. ... [Pg.72]

The dielectric constant and refractive index parameters and different functions of them that describe the reactive field of solvent [45] are insufficient to characterize the solute-solvent interactions. For this reason, some empirical scales of solvent polarity based on either kinetic or spectroscopic measurements have been introduced [46,47]. The solvatochromic classification of solvents is based on spectroscopic measurements. The solvatochromic parameters refer to the properties of a molecule when its nearest neighbors are identical with itself, and they are average values for a number of select solutes and somewhat independent of solute identity. [Pg.81]

The solvatochromic classification of solvents takes into consideration only the polar interactions of the solvents and not their cohesion. The transfer of a solute from one solvent to another occurs with the cancellation of dispersion interactions [38]. [Pg.82]

Solvatochromic pareuaeters, so called because they were Initially derived from solvent effects on UV/visible spectra, have been applied subsequently with success to a wide variety of solvent-dependent phenomena and have demonstrated good predictive ability. The B jo) scale of solvent polarity is based on the position of the intermolecular charge transfer absorption band of Reichardt s betaine dye [506]. Et(io> values are available for over 200 common solvents and have been used by Dorsey and co-%rarkers to study solvent interactions in reversed-phase liquid chromatography (section 4.5.4) [305,306]. For hydrogen-bonding solvents the... [Pg.748]

A question which has intrigued colour chemists for years is why indigo, a relatively small molecule, absorbs at such long wavelengths. The colour of indigo depends crucially on its environment. It is known that, in the vapour phase, the only situation in which it approaches a monomolecular state, indigo is red. In solution, indigo exhibits pronounced positive solvatochromism in non-polar solvents it is violet, while in polar solvents it is blue. In the solid state, and when applied to fabric as a vat dye, it is... [Pg.75]

There have been several other attempts to define solvent polarity parameters, among the more successful being those related to solvatochromic shifts the shift in wave-length/frequency of a band in the spectrum of a suitable absorbing species resulting from its interaction with the molecules of a series of different solvents. Particularly large shifts were observed with the zwitterion (51),... [Pg.391]

Solvatochromic probes have been used for a variety of applications like the study polarity of pure and mixed solvents [99], and the retention behavior in reverse-phase liquid chromatography [100] among other applications. Frechet et al. used 4-(N-methylamino)-l-nitrobenzene (p-MANB), as the chromophore, to probe the microenvironment of polyaromatic ether based dendrimers [101]. [Pg.49]

The solvatochromic behavior of these dyes in solution can be explained by the comparison of their permanent dipole moments. If the excited state exhibits a larger dipole moment (pii) than the ground state (/i0), it is preferentially stabilized by the more polar solvent, and the energy between these two states decreases, that is, the absorption and emission spectra both shift to the red region. [Pg.137]

There are single- and multiparameter approaches for determining the polarity and separation of contribution of different interactions to the total effect of polarity on spectroscopic characteristics. They are based on different theories of solvatochromic shifts of absorption and fluorescence bands. [Pg.207]


See other pages where Polarity/polarization solvatochromism is mentioned: [Pg.129]    [Pg.156]    [Pg.505]    [Pg.504]    [Pg.176]    [Pg.437]    [Pg.439]    [Pg.152]    [Pg.76]    [Pg.263]    [Pg.301]    [Pg.131]    [Pg.82]    [Pg.147]    [Pg.753]    [Pg.204]    [Pg.42]    [Pg.311]    [Pg.319]    [Pg.50]    [Pg.189]    [Pg.207]    [Pg.207]    [Pg.208]    [Pg.213]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Empirical scales of solvent polarity based on solvatochromic shifts

Polar molecule solvatochromic parameters

Polarity/polarizability solvatochromic probes

Solvatochromic

Solvatochromic polarity measures

Solvatochromicity

Solvatochromism

Solvatochromism polarity decreases

Solvatochromism polarity increases

Solvatochromism solvent polarity

Solvatochromisms

Solvent Polarity and Solvatochromic Shifts

© 2024 chempedia.info