Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar intermolecular force

One driving force is the attraction of solvent to the activated site. The attraction is mutual both the solvent molecules and the activated sites exert common (mostly polar) intermolecular forces upon one another. [Pg.327]

Adsorbents are chemicals. They are made of carbon which has been oxidized and thermally treated. As such, like other solid, semi-solid, and liquid chemicals, they display values of Hansen Solubility Parameters (HSPs). After all, it is the chiefly polar intermolecular forces they radiate which enable reversible bonding of solvents to their surfaces — and one aim of HSPs is to quantify the effect of those forces. [Pg.344]

Molecular interactions are the result of intermolecular forces which are all electrical in nature. It is possible that other forces may be present, such as gravitational and magnetic forces, but these are many orders of magnitude weaker than the electrical forces and play little or no part in solute retention. It must be emphasized that there are three, and only three, different basic types of intermolecular forces, dispersion forces, polar forces and ionic forces. All molecular interactions must be composites of these three basic molecular forces although, individually, they can vary widely in strength. In some instances, different terms have been introduced to describe one particular force which is based not on the type of force but on the strength of the force. Fundamentally, however, there are only three basic types of molecular force. [Pg.63]

There have been many attempts to divide the overall solubility parameter into components corresponding to the several intermolecular forces. For example, a so-called three-dimensional solubility parameter concept is built on the assumption that the ced is an additive function of contributions from dispersion (d), polar (p), and H-bonding (h) forces. It follows that... [Pg.416]

The degree of polarity has considerable influence on the physical properties of covalent compounds and it can also affect chemical reactivity. The melting point (mp) and boiling point (bp) are higher in ionic substances due to the strong nature of the interionic forces, whereas the covalent compounds have lower values due to the weak nature of intermolecular forces. [Pg.299]

When iodine chloride is heated to 27°C, the weak intermolecular forces are unable to keep the molecules rigidly aligned, and the solid melts. Dipole forces are still important in the liquid state, because the polar molecules remain close to one another. Only in the gas, where the molecules are far apart, do the effects of dipole forces become negligible. Hence boiling points as well as melting points of polar compounds such as Id are somewhat higher than those of nonpolar substances of comparable molar mass. This effect is shown in Table 9.3. [Pg.237]

Strategy Determine whether the molecule is polar or nonpolar and identify the intermolecular forces present. Remember, dispersion forces are always present and increase with molar mass. [Pg.237]

Polyesters are another important class of polyols. There are many polyester types used, so a generic structure is shown in Scheme 4.4. They are often based on adipic acid and either ethylene glycol (ethylene adipates) or 1,4-butanediol (butylene adipates). Polyesters, because of the polar carbonyl groups, contribute more to intermolecular forces, and physical properties such as tear and impact resistance are often improved by using them. They are also utilized for their solvent and acid resistance and light stability. Relatively poor hydrolytic stability is... [Pg.212]

Polar molecules attract other polar molecules through dipole-dipole intermolecular forces. Polar solutes tend to have higher solubilities in polar solvents than in nonpolar solvents. Which of the following pairs of compounds would be expected to have the higher solubility in hexafluorobenzene, Cf,I... [Pg.255]

What Do We Need to Know Already This chapter uses the concepts of potential energy (Section A), coulombic interactions (Section 2.4), polar molecules and dipoles (Section 3.3), and intermolecular forces in gases (Section 4.12). [Pg.299]

We have to refine our atomic and molecular model of matter to see how bulk properties can be interpreted in terms of the properties of individual molecules, such as their size, shape, and polarity. We begin by exploring intermolecular forces, the forces between molecules, as distinct from the forces responsible for the formation of chemical bonds between atoms. Then we consider how intermolecular forces determine the physical properties of liquids and the structures and physical properties of solids. [Pg.299]

The effect of molecular interactions on the distribution coefficient of a solute has already been mentioned in Chapter 1. Molecular interactions are the direct effect of intermolecular forces between the solute and solvent molecules and the nature of these molecular forces will now be discussed in some detail. There are basically four types of molecular forces that can control the distribution coefficient of a solute between two phases. They are chemical forces, ionic forces, polar forces and dispersive forces. Hydrogen bonding is another type of molecular force that has been proposed, but for simplicity in this discussion, hydrogen bonding will be considered as the result of very strong polar forces. These four types of molecular forces that can occur between the solute and the two phases are those that the analyst must modify by choice of the phase system to achieve the necessary separation. Consequently, each type of molecular force enjoins some discussion. [Pg.23]

The best solvent for a molecular solid Is one whose Intermolecular forces match the forces holding the molecules in the crystal. For a solid held together by dispersion forces, good solvents are nonpolar liquids such as carbon tetrachloride (CCI4) and cyclohexane (Cg H12) For polar solids, a polar solvent such as acetone works well. Example provides some practice in recognizing solubility types. [Pg.839]

With the exception of rather small polar molecules, the majority of compounds, including drugs, appear to penetrate biological membranes via a lipid route. As a result, the membrane permeability of most compounds is dependent on K0/w. The physicochemical interpretation of this general relationship is based on the atomic and molecular forces to which the solute molecules are exposed in the aqueous and lipid phases. Thus, the ability of a compound to partition from an aqueous to a lipid phase of a membrane involves the balance between solute-water and solute-membrane intermolecular forces. If the attractive forces of the solute-water interaction are greater than those of the solute-membrane interaction, membrane permeability will be relatively poor and vice versa. In examining the permeability of a homologous series of compounds... [Pg.41]

All of these intermolecular forces influence several properties of polymers. Dispersion forces contribute to the factors that result in increased viscosity as molecular weight increases. Crystalline domains arise in polyethylene because of dispersion forces. As you will learn later in the text, there are other things that influence both viscosity and crystallization, but intermolecular forces play an important role. In polar polymers, such as polymethylmethacrylate, polyethylene terephthalate and nylon 6, the presence of the polar groups influences crystallization. The polar groups increase the intensity of the interactions, thereby increasing the rate at which crystalline domains form and their thermal stability. Polar interactions increase the viscosity of such polymers compared to polymers of similar length and molecular weight that exhibit low levels of interaction. [Pg.76]

We have already mentioned that silver chloride is readily soluble in liquid ammonia. Because it is slighdy less polar than water and has lower cohesion energy, intermolecular forces make it possible for organic molecules to create cavities in liquid ammonia. As a result, most organic compounds are more soluble in liquid ammonia than they are in water. Physical data for liquid ammonia are summarized in Table 10.2. [Pg.337]

In dimethyl ether, the oxygen atom is sp3 hybridized. In creating two single bonds, each bond is formed by the overlap of one of its sp3 hybrid orbitals with the sp3 hybrid orbital on the adjacent carbon atom. Each of the remaining two hybrid orbitals on the oxygen atom contain a lone pair of electrons. The resulting molecule is polar. The intermolecular forces found operating between molecules of dimethyl ether are therefore dipole-dipole interactions and London forces. [Pg.392]


See other pages where Polar intermolecular force is mentioned: [Pg.234]    [Pg.6229]    [Pg.100]    [Pg.234]    [Pg.6229]    [Pg.100]    [Pg.115]    [Pg.1103]    [Pg.100]    [Pg.248]    [Pg.79]    [Pg.83]    [Pg.298]    [Pg.238]    [Pg.220]    [Pg.305]    [Pg.432]    [Pg.999]    [Pg.783]    [Pg.891]    [Pg.758]    [Pg.915]    [Pg.59]    [Pg.26]    [Pg.130]    [Pg.76]    [Pg.90]    [Pg.79]    [Pg.83]    [Pg.95]    [Pg.568]    [Pg.863]    [Pg.197]    [Pg.216]    [Pg.216]   


SEARCH



Bond polarity and intermolecular forces

Polar forces

Polar intermolecular force definition

Polar molecules intermolecular forces between

Polar surface intermolecular forces with adsorbents

Polarization forces

© 2024 chempedia.info