Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar forces interactions

For the case where polar force interactions are also involved, Wu (5) has proposed, by using reciprocal mean expressions for both the dispersion and the polar interactions, that the interfacial tension 712 between two contacting phases be represented as... [Pg.144]

Molecular interactions are the result of intermolecular forces which are all electrical in nature. It is possible that other forces may be present, such as gravitational and magnetic forces, but these are many orders of magnitude weaker than the electrical forces and play little or no part in solute retention. It must be emphasized that there are three, and only three, different basic types of intermolecular forces, dispersion forces, polar forces and ionic forces. All molecular interactions must be composites of these three basic molecular forces although, individually, they can vary widely in strength. In some instances, different terms have been introduced to describe one particular force which is based not on the type of force but on the strength of the force. Fundamentally, however, there are only three basic types of molecular force. [Pg.63]

The theory of molecular interactions can become extremely involved and the mathematical manipulations very unwieldy. To facilitate the discussion, certain simplifying assumptions will be made. These assumptions will be inexact and the expressions given for both dispersive and polar forces will not be precise. However, they will be reasonably accurate and sufficiently so, to reveal those variables that control the different types of interaction. At a first approximation, the interaction energy, (Ud), involved with dispersive forces has been calculated to be... [Pg.64]

Two Molecules Interacting and Held Together by Dispersive Forces and Polar Forces from Permanent Dipoles... [Pg.68]

The term "hydrophilic force", literally meaning "love of water" force, was introduced as a complement to "hydrophobic force". Hydrophilic forces are equivalent to polar forces, and polar solvents that interact strongly with water are called hydrophilic solvents. [Pg.72]

LW) interactions refer to the purely physical London s (dispersion), the Keesom s (polar) and Debye s (induced polar) interactions and correspond to magnitudes ranging from approximately 0.1 to 10 kJ/mol (but in rare cases may be higher). The polar forces in the bulk of condensed phases are believed to be small due to the self-cancellation occurring in the Boltzmann-averaging of the multi-body... [Pg.13]

The effect of molecular interactions on the distribution coefficient of a solute has already been mentioned in Chapter 1. Molecular interactions are the direct effect of intermolecular forces between the solute and solvent molecules and the nature of these molecular forces will now be discussed in some detail. There are basically four types of molecular forces that can control the distribution coefficient of a solute between two phases. They are chemical forces, ionic forces, polar forces and dispersive forces. Hydrogen bonding is another type of molecular force that has been proposed, but for simplicity in this discussion, hydrogen bonding will be considered as the result of very strong polar forces. These four types of molecular forces that can occur between the solute and the two phases are those that the analyst must modify by choice of the phase system to achieve the necessary separation. Consequently, each type of molecular force enjoins some discussion. [Pg.23]

The basic principles are described in many textbooks [24, 26]. They are thus only sketchily presented here. In a conventional classical molecular dynamics calculation, a system of particles is placed within a cell of fixed volume, most frequently cubic in size. A set of velocities is also assigned, usually drawn from a Maxwell-Boltzmann distribution appropriate to the temperature of interest and selected in a way so as to make the net linear momentum zero. The subsequent trajectories of the particles are then calculated using the Newton equations of motion. Employing the finite difference method, this set of differential equations is transformed into a set of algebraic equations, which are solved by computer. The particles are assumed to interact through some prescribed force law. The dispersion, dipole-dipole, and polarization forces are typically included whenever possible, they are taken from the literature. [Pg.271]

H-bonding is an important, but not the sole, interatomic interaction. Thus, total energy is usually calculated as the sum of steric, electrostatic, H-bonding and other components of interatomic interactions. A similar situation holds with QSAR studies of any property (activity) where H-bond parameters are used in combination with other descriptors. For example, five molecular descriptors are applied in the solvation equation of Kamlet-Taft-Abraham excess of molecular refraction (Rj), which models dispersion force interactions arising from the polarizability of n- and n-electrons the solute polarity/polarizability (ir ) due to solute-solvent interactions between bond dipoles and induced dipoles overall or summation H-bond acidity (2a ) overall or summation H-bond basicity (2(3 ) and McGowan volume (VJ [53] ... [Pg.142]

Although the behavior of the base perfume, and thus the odor value (OV) of each component, can be known, the OV in the new mixture will change because the OV depends largely on the solvent and the remaining aromatic components present in the perfume mixture. This is due to molecular size and in great extent to physical interactions at the molecular level, such as polarity forces (i.e. ion-dipole, dipole-dipole, hydrogen bonding forces, and others), in other words to the structure. [Pg.469]

The nonadditivity arising from the polarization forces is the most evident. The interaction energy of two atoms depends upon the location of other atoms because the latter polarize the electronic charge distribution of both interacting atoms. For a three-atom system each pair interaction depends on coordinates of all three atoms,... [Pg.138]

Early field ion emission studies of gas-surface interactions use field ionization mass spectrometry. Gas molecules are supplied continuously to the tip surface by a polarization force and by the hopping motion of the molecules on the tip surface and along the tip shank. These molecules are subsequently field ionized. The role of the emitter surface in chemical reactions is not transparent and has not been investigated in detail. Only in recent pulsed-laser stimulated field desorption studies with atom-probes are these questions addressed in detail. We now discuss briefly a preliminary study of reaction intermediates in NH3 formation in pulsed-laser stimulated field desorption of co-adsorbed hydrogen and nitrogen,... [Pg.302]

Nonpolar (hydrophobic) compounds dissolve poorly in water they cannot hydrogen-bond with the solvent, and their presence forces an energetically unfavorable ordering of water molecules at their hydrophobic surfaces. To minimize the surface exposed to water, nonpolar compounds such as lipids form aggregates (micelles) in which the hydrophobic moieties are sequestered in the interior, associating through hydrophobic interactions, and only the more polar moieties interact with water. [Pg.58]

The intermolecular forces of adhesion and cohesion can be loosely classified into three categories quantum mechanical forces, pure electrostatic forces, and polarization forces. Quantum mechanical forces give rise both to covalent bonding and to the exchange interactions that balance tile attractive forces when matter is compressed to the point where outer electron orbits interpenetrate. Pure electrostatic interactions include Coulomb forces between charged ions, permanent dipoles, and quadrupoles. Polarization forces arise from the dipole moments induced in atoms and molecules by the electric fields of nearby charges and other permanent and induced dipoles. [Pg.1435]

The forces involved in the interaction al a good release interface must be as weak as possible. They cannot be the strong primary bonds associated with ionic, covalent, and metallic bonding neither arc they the stronger of the electrostatic and polarization forces that contribute to secondary van der Waals interactions. Rather, they are the weakest of these types of forces, the so-called London or dispersion forces that arise from interactions of temporary dipoles caused by fluctuations in electron density. They are common to all matter. The surfaces that are solid at room temperature and have the lowest dispersion-force interactions are those comprised of aliphatic hydrocarbons and fluorocarbons. [Pg.1435]


See other pages where Polar forces interactions is mentioned: [Pg.588]    [Pg.147]    [Pg.286]    [Pg.31]    [Pg.32]    [Pg.588]    [Pg.147]    [Pg.286]    [Pg.31]    [Pg.32]    [Pg.110]    [Pg.101]    [Pg.101]    [Pg.28]    [Pg.89]    [Pg.277]    [Pg.66]    [Pg.66]    [Pg.1063]    [Pg.276]    [Pg.192]    [Pg.518]    [Pg.248]    [Pg.314]    [Pg.197]    [Pg.720]    [Pg.162]    [Pg.123]    [Pg.5]    [Pg.21]    [Pg.132]    [Pg.101]    [Pg.101]    [Pg.169]    [Pg.196]    [Pg.122]    [Pg.14]    [Pg.60]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Interaction force

Polar forces

Polar interactions

Polarization forces

Polarization interaction

© 2024 chempedia.info