Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum rule

Caution This is not the time to practice just the Golden Rule, that is, do unto others as you would have them do unto you. Also apply the Platinum Rule, which is do unto others as they would have done unto them. Make sure you understand what your client, owner, or customer values before you decide to give them something that is beyond the project s scope. Your personal preference is a low priority. As noted by novelist Charles Dudley Warner, The exeellence of a gift lies in its appropriateness rather than its value. And, in mentioning the Platinum Rule, I am emphasizing appropriateness. [Pg.215]

Platinum Rule This rule says do unto others as they would have done unto them. It contrasts with the traditional Golden Rule which is do unto others as we would have done unto us. The value of the Platinum Rule in marketing and in managing projects is that is focuses the service provider on those being served. [Pg.415]

JS/oble Metals. Noble or precious metals, ie, Pt, Pd, Ag, and Au, are ftequendy alloyed with the closely related metals, Ru, Rh, Os, and Ir (see Platinum-GROUP metals). These are usually supported on a metal oxide such as a-alumina, a-Al202, or siUca, Si02. The most frequently used precious metal components are platinum [7440-06-4J, Pt, palladium [7440-05-3] Pd, and rhodium [7440-16-6] Rh. The precious metals are more commonly used because of the abiUty to operate at lower temperatures. As a general rule, platinum is more active for the oxidation of paraffinic hydrocarbons palladium is more active for the oxidation of unsaturated hydrocarbons and CO (19). [Pg.503]

The copper(II) transport rate increases, as a rule, as Cu + initial concentration in the feed solution increases. The increase of the caiiier s concentration from 10 to 30 vol.% results in a decrease of both metal fluxes and in an increase of Cu transport selectivity. The increase of TOA concentration in the liquid membrane up to 0.1 M leads to a reduction of the copper(II) flux, and the platinum(IV) flux increases at > 0.2 M. Composition of the strip solution (HCl, H,SO, HNO, HCIO, H,0)does not exert significant influence on the transport of extracted components through the liquid membranes at electrodialysis. [Pg.283]

Oxygen overpotential is about 0.4-0.5 volt at a polished platinum anode in acid solution, and is of the order of 1 volt in alkaline solution with current densities of 0.02-0.03 A cm-2. As a rule the overpotential associated with the deposition of metals on the cathode is quite small (about 0.1-0.3 volt) because the depositions proceed nearly reversibly. [Pg.507]

For the noble metals used in oxidation, the loading is about 0.1 oz per car, with calls for a million ounces per year. The current world production rates of platinum, palladium, and rhodium are 1.9, 1.6, and 0.076 million ounces respectively the current U,S. demand for platinum, palladium, rhodium, and ruthenium are 0.52, 0.72, 0.045, and 0.017 million ounces respectively (72, 73). The supply problem would double if NO reduction requires an equal amount of noble metal. Pollution conscious Japan has adopted a set of automobile emission rules that are the same as the U.S., and Western Europe may follow this creates a demand for new car catalysts approaching the U.S. total. The bulk of world production and potential new mines are in the Soviet Union and South Africa. The importation of these metals, assuming the current price of platinum at 155/oz and palladium at 78/oz, would pose a balance of payment problem. The recovery of platinum contained in spent catalysts delivered to the door of precious metal refiners should be above 95% the value of platinum in spent catalysts is greater than the value of lead in old batteries, and should provide a sufficient incentive for scavengers. [Pg.81]

The international temperature scale is based upon the assignment of temperatures to a relatively small number of fixed points , conditions where three phases, or two phases at a specified pressure, are in equilibrium, and thus are required by the Gibbs phase rule to be at constant temperature. Different types of thermometers (for example, He vapor pressure thermometers, platinum resistance thermometers, platinum/rhodium thermocouples, blackbody radiators) and interpolation equations have been developed to reproduce temperatures between the fixed points and to generate temperature scales that are continuous through the intersections at the fixed points. [Pg.617]

These rules apply also to the palladium and platinum groups, the eigenfunctions involved being 4d65s5 3 and 5dms(ipz, respectively. [Pg.94]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

Platinum and other metals of the platinum group are the most universal catalysts for many electrochemical reactions. They are stable over a wide range of potentials in most solutions, including strongly acidic and strongly alkaline solutions. Their activity as a rule is high in a variety of reactions. [Pg.525]

The differences between faces usually are small. The reaction rates observed at the different faces as a rule are of the same order of magnitude and differ by no more than a factor of 3 to 5. Significant catalytic effects where one of the faces is tens of times more (or fess) active than the other single-crystal faces of the same metal are rare. One of the few examples is the reduction of CO2 on platinum which occurs with the formation of a strongly bound chemisorbed product (called reduced CO2). At the... [Pg.532]

On the surface of metal electrodes, one also hnds almost always some kind or other of adsorbed oxygen or phase oxide layer produced by interaction with the surrounding air (air-oxidized electrodes). The adsorption of foreign matter on an electrode surface as a rule leads to a lower catalytic activity. In some cases this effect may be very pronounced. For instance, the adsorption of mercury ions, arsenic compounds, or carbon monoxide on platinum electrodes leads to a strong decrease (and sometimes total suppression) of their catalytic activity toward many reactions. These substances then are spoken of as catalyst poisons. The reasons for retardation of a reaction by such poisons most often reside in an adsorptive displacement of the reaction components from the electrode surface by adsorption of the foreign species. [Pg.534]

The electron shells of all the elements in Group 1, for instance, are filled, except for a single electron in an outermost s orbital. In fact, most of the elements in any column of the periodic table have the same number of electrons in their outermost orbitals, the orbitals involved in chemical reactions. Those orbitals are usually the same type orbital—5, p, d, or/, though there are a few exceptions. As mentioned in Chapter 4, vanadium (Z = 23) has an unexpected quirk in the arrangement of the electrons in its outer orbitals. Platinum (Z = 78) exhibits a similar anomaly, as do a few other elements. Most elements, however, play by the rules. This is why the elements in a group behave similarly. [Pg.59]

Unfortunately, platinum-iridium alloy was a poor choice, for it has the unusual property of shrinking (albeit microscopically) with time. This SI metre rule is now about 0.3 per cent too short. King Edgar s yardstick, being made of gold, would still be the same length today as when it was made, but gold is too ductile, and could have been stretched, bent or re-scored. [Pg.15]

Electrospray ionization will often produce ions that are fully coordinated, stable, and nonreactive in the gas phase. These ions may be probed by removal of ligands to form coordinatively unsaturated ions that are generally reactive. The chemical activity of metal cluster ions differs markedly and often shows size specific enhanced reactivity or lack of reactivity. Silver cluster ions Ag are fairly inert similar to Ag+. Platinum cluster ions PL are quite reactive similar to Pt+. Often, large cluster ions only appear to react with one donor molecule such as benzene this may be due to low concentrations of reactants or short reaction times. Similar clusters may react with a larger number of smaller molecules, and so until more information is available, rules for the coordination behavior of metal clusters are as yet not available. [Pg.420]

Other electron-poor clusters include the 44-electron Pt3(CO)3(PPh3)4 and the 42-electron species Pd3(CO)3(PPh3)3 and [Re3Cl12p. For the 44-electron system, the 18-electron rule predicts two double bonds within the M3 triangle and for the 42-electron complexes, three double bonds. The structures of the platinum and palladium complexes are unknown, but the Re-Re distances of 2.47-2.49 A in the anion [Re l ]3- are regarded (20) as short and consistent with a formal bond order of two. [Pg.239]


See other pages where Platinum rule is mentioned: [Pg.108]    [Pg.215]    [Pg.215]    [Pg.108]    [Pg.215]    [Pg.215]    [Pg.364]    [Pg.200]    [Pg.130]    [Pg.77]    [Pg.349]    [Pg.192]    [Pg.107]    [Pg.110]    [Pg.156]    [Pg.162]    [Pg.363]    [Pg.1452]    [Pg.355]    [Pg.562]    [Pg.177]    [Pg.276]    [Pg.92]    [Pg.810]    [Pg.345]    [Pg.293]    [Pg.156]    [Pg.50]    [Pg.144]    [Pg.209]    [Pg.326]    [Pg.347]    [Pg.240]    [Pg.243]   
See also in sourсe #XX -- [ Pg.215 , Pg.415 ]




SEARCH



Something Extra The Platinum Rule

© 2024 chempedia.info