Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platelet measurement

A standard initial laboratory evaluation for anemia includes a complete blood count (evaluation of the serum hemoglobin and hematocrit concentration, white blood cell count, platelets), measurement of the red blood cell count and size, and review of peripheral smear. [Pg.975]

Haematopoietic Blood tests Complete blood count (red and white blood cell indices and platelets) measurement of clotting factors, prothrombin time, partial thromboplastin time... [Pg.169]

The basic single-angle interval light-scattering method caimot accurately measure individual red blood cell or platelet volumes, but it can provide MCV and MPV. Red cells are bi-concave disks, and platelets ate rod to disk shaped Scattering intensities depend on the orientation in the flow cell. [Pg.403]

In principle, the two-angle interval method can produce all CBC parameters within a single measurement channel, uniquely providing ceU-by-ceU hemoglobin concentration. The mean of the concentrations provides an alternative (and direct) measurement of MCHC. The method also provides an alternative HGB measurement, because HGB may be set equal to (RBC x MCV x MCHC)/1000. This method, like the basic light-scattering method, uses the same flow cell to measure platelets and ted cells with the result that the method is capable of providing the CBC parameters RBC, HGB, HCT, MCV, MCHC, MCH, and PLT. The method can also count a sample s white blood cells if the sample s red blood cells have been lysed. [Pg.403]

Subscripts denote reinforcement morphology p = particulate, 1 = platelet, w = whisker, f = fiber, i = interlayer between reinforcement and matrix. Strength as measured in a four-point flexure test (modulus of mpture) to convert MPa to psi, multiply by 145. [Pg.45]

DAT is predominantly expressed by dopaminergic brain neurons, NET by noradrenergic neurons in the central and peripheral nervous system, and SERT is restricted to the axons of serotonergic neurons, which originate in the raphe nuclei and innervate numerous higher brain regions therefore SERT is widely distributed in the brain. Outside the brain, 5HT transport can be measured on non-neuronal cells (e.g. platelets, lympho-blastoid cells and smooth muscle cells) most of the 5HT appearing in the circulation is taken up by platelets. [Pg.839]

A number of laboratory tests are available to measure the phases of hemostasis described above. The tests include platelet count, bleeding time, activated partial thromboplastin time (aPTT or PTT), prothrombin time (PT), thrombin time (TT), concentration of fibrinogen, fibrin clot stabifity, and measurement of fibrin degradation products. The platelet count quantitates the number of platelets, and the bleeding time is an overall test of platelet function. aPTT is a measure of the intrinsic pathway and PT of the extrinsic pathway. PT is used to measure the effectiveness of oral anticoagulants such as warfarin, and aPTT is used to monitor heparin therapy. The reader is referred to a textbook of hematology for a discussion of these tests. [Pg.608]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

Measure PT/INR every 2 to 3 days. Obtain CBC or platelet count. [Pg.158]

A third enzyme may have limited potential as a measure of exposure. Neurotoxic esterase, also known as neuropathy target esterase (NTE), is inhibited by certain organophosphate esters. When brain NTE is inhibited above 70% for acute or possibly as low as 50% for repeated exposures, there is a consensus that delayed neuropathy is likely. NTE also is found in lymphocytes and platelets (Lotti et al. 1984). The... [Pg.224]

By far the most widely measured marker of hemostatic activation is D-dimer, which is a product formed by the action of plasmin on cross-linked fibrin (95). D-dimer levels in plasma are generally elevated in DIC. The consumption of platelets and coagulation proteins as a result of thrombin generation leads to the deposition of fibrin thrombi at multiple organ sites. This triggers fibrinolysis with an increase in the formation of fibrin degradation products, which can cause bleeding at multiple sites. Because DIC can have a variety of causes and may coexist with systemic fibrinolysis, such as in pulmonary embolism or deep vein thrombosis, the d-Dimer test is not specific for DIC (95). [Pg.155]

Many of the coagulation factors measured by global coagulation tests have limited stability, and the time and temperature of storage of sample will affect their measurements. Concepts of analyte stability and half-life in plasma extend to markers measured by immunoassay. Markers of platelet activation are affected by artifactual activation in vitro upon collection of the blood specimen. This section will highlight some of the nonanalytical variables that, if uncontrolled, can lead to spurious results and thus affect the interpretation of laboratory data. [Pg.157]

The CTAD additive mixture has found application in the monitoring of heparin therapy by either the chromogenic substrate assay or the APTT and in the measurement of platelet markers such as P-selectin (CD62) by flow cytometry (108, 109). [Pg.160]

Measurement of free t-PA in plasma presents challenges in terms of preventing t-PA from complexing to PAI-1 released from platelets after blood collection. To dissociate any preformed t-PA-PAI-1 complex, the anticoagulant pH has to be close to 3.0. Even if blood is collected with an acidic anticoagulant, the blood pH will rise because of the powerful buffering action of hemoglobin. Thus, the pH of plasma has to be adjusted to 3.0 in order to dissociate the t-PA-PAI-I complex (115). [Pg.161]

The dimensions of crystallites vary widely some measure only a few nanometers in any direction, while others, known as lamellae , are platelets with lateral dimensions of several tens of nanometers and thicknesses of a few nanometers. The chain axes in lamellae typically span the thickness of the crystallite. With reference to the unit cell illustrated in Fig. 7.2 a), the c direction corresponds to the thickness of the crystallite. [Pg.137]

Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount. Figure 15.4(A) shows the effect of the R = Zn2+/Al3+ ratio, which determines the charge density of the LDH layer, on the Freundlich adsorption isotherms. K values are far higher than those measured for smectite or other inorganic matrices. The increase in Kf with the charge density (Kf= 215, 228, 325mg/g, respectively, for R = 4, 3 and 2) is supported by a mechanism of adsorption based on an anion exchange reaction. The desorption isotherms confirm that urease is chemically adsorbed by the LDH surface. The aggregation of the LDH platelets can affect noticeably their adsorption capacity for enzymes and the preparation of LDH adsorbant appears to be a determinant step for the immobilization efficiency. [ZnRAl]-urease hybrid LDH was also prepared by coprecipitation with R = 2, 3 and 4 and Q= urease/ZnRAl from 1 /3 up to 2.5. For Q < 1.0,100 % of the urease is retained by the LDH matrix whatever the R value while for higher Q values an increase in the enzyme/LDH weight ratio leads to a decrease in the percentage of the immobilized amount.

See other pages where Platelet measurement is mentioned: [Pg.276]    [Pg.144]    [Pg.208]    [Pg.276]    [Pg.144]    [Pg.208]    [Pg.131]    [Pg.454]    [Pg.395]    [Pg.400]    [Pg.401]    [Pg.405]    [Pg.320]    [Pg.185]    [Pg.595]    [Pg.245]    [Pg.48]    [Pg.125]    [Pg.125]    [Pg.166]    [Pg.131]    [Pg.397]    [Pg.406]    [Pg.215]    [Pg.37]    [Pg.154]    [Pg.194]    [Pg.377]    [Pg.225]    [Pg.227]    [Pg.15]    [Pg.56]    [Pg.156]    [Pg.159]    [Pg.166]    [Pg.25]   


SEARCH



Phospholipid Breakdown Measurements in Stimulated Platelets

Platelet accumulation, measurement

Platelet aggregation, measurement

Platelet aggregation, measurement inhibition

Platelet measurement methods

© 2024 chempedia.info