Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma wavelength

Picosecond pedestal, 143 Pin-hole camera, 128 Plasma channels, 112, 147, 148 Plasma defocusing, 84, 91 Plasma frequency, 166 Plasma index of refraction, 147 Plasma mirror (PM) technique, 194 Plasma wakefield acceleration, 172 Plasma wavelength, 166 Plasma-induced effects, 83 Polarization, 97 Polarization control, 87 Ponderomotive force, 170 Population inversions, 19 Post-irradiation spectroscopy, 156 Pre-pulse, 143 Propagation, 81 Protein, 102 Pump depletion, 151... [Pg.211]

Problem 3.7. Neglecting relaxation, find the penetration depths of surface plasmon polaritons into both metal and vacuum for wavelengths A much longer than the plasma wavelength, Ap. Calculate them for a surface plasmon polariton at an A1 surface (Ap 800 A) with A = 5890 A. [Pg.91]

Element Wavelength, nm Flame emission Flame atomic absorption Electrothermal atomic absorption Argon ICP Plasma atomic fluorescence... [Pg.718]

For a longitudinal disturbance of wavelength 12 pm, the droplets have a mean diameter of about 3-4 pm. These very fine droplets are ideal for ICP/MS and can be swept into the plasma flame by a flow of argon gas. Unlike pneumatic forms of nebulizer in which the relative velocities of the liquid and gas are most important in determining droplet size, the flow of gas in the ultrasonic nebulizer plays no part in the formation of the aerosol and serves merely as the droplet carrier. [Pg.148]

Most Ar and Kr lasers are CW. A gas pressure of about 0.5 Torr is used in a plasma tube of 2-3 mm bore. Powers of up to 40 W distributed among various laser wavelengths can be obtained. [Pg.354]

Fig. 37. Resist images obtained with a cross-linking monocomponent TSI resist (PHOST polymer), cross-linked by photo-oxidation using light at 193-nm wavelength. After exposure, the film was treated with a vapor of dimethyl silyl dimethyl amine and then plasma developed using O2—RIE (122). Fig. 37. Resist images obtained with a cross-linking monocomponent TSI resist (PHOST polymer), cross-linked by photo-oxidation using light at 193-nm wavelength. After exposure, the film was treated with a vapor of dimethyl silyl dimethyl amine and then plasma developed using O2—RIE (122).
Fig. 4. Examples of emission spectrometry as a diagnostic monitoring tool for plasma processing, (a) The removal of chlorine contamination from copper diode leads using a hydrogen—nitrogen plasma. Emissions are added together from several wavelengths, (b) The etching and eventual removal of a 50-p.m thick polyimide layer from an aluminum substrate, where (x ) and (° ) correspond to wavelengths (519.82 and 561.02 nm, respectively) for molecular CO2... Fig. 4. Examples of emission spectrometry as a diagnostic monitoring tool for plasma processing, (a) The removal of chlorine contamination from copper diode leads using a hydrogen—nitrogen plasma. Emissions are added together from several wavelengths, (b) The etching and eventual removal of a 50-p.m thick polyimide layer from an aluminum substrate, where (x ) and (° ) correspond to wavelengths (519.82 and 561.02 nm, respectively) for molecular CO2...
Lasers act as sources and sometimes as amplifiers of coherent k—uv radiation. Excitation in lasers is provided by external particle or photon pump sources. The high energy densities requked to create inverted populations often involve plasma formation. Certain plasmas, eg, cadmium, are produced by small electric discharges, which act as laser sources and amplifiers (77). Efforts that were dkected to the improvement of the energy conversion efficiencies at longer wavelengths and the demonstration of an x-ray laser in plasma media were successful (78). [Pg.114]

Many sources of energy are used to excite samples to emit characteristic wavelengths for chemical identification and assay (91,92). Very high temperature sources can be employed but are not necessary. AH materials can be vaporized and excited with temperatures of only a few electron volts. The introduction of samples to be analyzed into high temperature or high density plasmas and thek uniform excitation often are problematic. [Pg.114]

An hplc assay was developed suitable for the analysis of enantiomers of ketoprofen (KT), a 2-arylpropionic acid nonsteroidal antiinflammatory dmg (NSAID), in plasma and urine (59). Following the addition of racemic fenprofen as internal standard (IS), plasma containing the KT enantiomers and IS was extracted by Hquid-Hquid extraction at an acidic pH. After evaporation of the organic layer, the dmg and IS were reconstituted in the mobile phase and injected onto the hplc column. The enantiomers were separated at ambient temperature on a commercially available 250 x 4.6 mm amylose carbamate-packed chiral column (chiral AD) with hexane—isopropyl alcohol—trifluoroacetic acid (80 19.9 0.1) as the mobile phase pumped at 1.0 mL/min. The enantiomers of KT were quantified by uv detection with the wavelength set at 254 nm. The assay allows direct quantitation of KT enantiomers in clinical studies in human plasma and urine after adrninistration of therapeutic doses. [Pg.245]

The rates of these reactions bodr in the gas phase and on the condensed phase are usually increased as the temperature of die process is increased, but a substantially greater effect on the rate cati often be achieved when the reactants are adsorbed on die surface of a solid, or if intense beams of radiation of suitable wavelength and particles, such as electrons and gaseous ions with sufficient kinetic energies, can be used to bring about molecular decomposition. It follows drat the development of lasers and plasmas has considerably increased die scope and utility of drese thermochemical processes. These topics will be considered in the later chapters. [Pg.2]

In Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), a gaseous, solid (as fine particles), or liquid (as an aerosol) sample is directed into the center of a gaseous plasma. The sample is vaporized, atomized, and partially ionized in the plasma. Atoms and ions are excited and emit light at characteristic wavelengths in the ultraviolet or visible region of the spectrum. The emission line intensities are proportional to the concentration of each element in the sample. A grating spectrometer is used for either simultaneous or sequential multielement analysis. The concentration of each element is determined from measured intensities via calibration with standards. [Pg.48]

An ICP-OES instrument consists of a sample introduction system, a plasma torch, a plasma power supply and impedance matcher, and an optical measurement system (Figure 1). The sample must be introduced into the plasma in a form that can be effectively vaporized and atomized (small droplets of solution, small particles of solid or vapor). The plasma torch confines the plasma to a diameter of about 18 mm. Atoms and ions produced in the plasma are excited and emit light. The intensity of light emitted at wavelengths characteristic of the particular elements of interest is measured and related to the concentration of each element via calibration curves. [Pg.634]

Direct-reading polychromators (Figure 3b) have a number of exit slits and photomultiplier tube detectors, which allows one to view emission from many lines simultaneously. More than 40 elements can be determined in less than one minute. The choice of emission lines in the polychromator must be made before the instrument is purchased. The polychromator can be used to monitor transient signals (if the appropriate electronics and software are available) because unlike slew-scan systems it can be set stably to the peak emission wavelength. Background emission cannot be measured simultaneously at a wavelength close to the line for each element of interest. For maximum speed and flexibility both a direct-reading polychromator and a slew-scan monochromator can be used to view emission from the plasma simultaneously. [Pg.641]

SNMS sensitivity depends on the efficiency of the ionization process. SNs are post-ionized (to SN" ) either hy electron impact (El) with electrons from a hroad electron (e-)heam or a high-frequency (HF-) plasma (i.e. an e-gas), or, most efficiently, hy photons from a laser. In particular, the photoionization process enables adjustment of the fragmentation rate of sputtered molecules by varying the laser intensity, pulse width, and/or wavelength. [Pg.123]


See other pages where Plasma wavelength is mentioned: [Pg.242]    [Pg.149]    [Pg.166]    [Pg.100]    [Pg.450]    [Pg.451]    [Pg.410]    [Pg.94]    [Pg.548]    [Pg.16]    [Pg.1160]    [Pg.601]    [Pg.174]    [Pg.242]    [Pg.149]    [Pg.166]    [Pg.100]    [Pg.450]    [Pg.451]    [Pg.410]    [Pg.94]    [Pg.548]    [Pg.16]    [Pg.1160]    [Pg.601]    [Pg.174]    [Pg.37]    [Pg.437]    [Pg.446]    [Pg.457]    [Pg.94]    [Pg.136]    [Pg.149]    [Pg.15]    [Pg.191]    [Pg.20]    [Pg.323]    [Pg.117]    [Pg.245]    [Pg.58]    [Pg.531]    [Pg.712]    [Pg.233]    [Pg.309]    [Pg.262]   
See also in sourсe #XX -- [ Pg.450 , Pg.451 ]




SEARCH



© 2024 chempedia.info