Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plant cells cellulose walls

Fibers for commercial and domestic use are broadly classified as natural or synthetic. The natural fibers are vegetable, animal, or mineral ia origin. Vegetable fibers, as the name implies, are derived from plants. The principal chemical component ia plants is cellulose, and therefore they are also referred to as ceUulosic fibers. The fibers are usually bound by a natural phenoHc polymer, lignin, which also is frequentiy present ia the cell wall of the fiber thus vegetable fibers are also often referred to as lignocellulosic fibers, except for cotton which does not contain lignin. [Pg.357]

Hemicellulose [9034-32-6] is the least utilized component of the biomass triad comprising cellulose (qv), lignin (qv), and hemiceUulose. The term was origiaated by Schulze (1) and is used here to distinguish the nonceUulosic polysaccharides of plant cell walls from those that are not part of the wall stmcture. Confusion arises because other hemicellulose definitions based on solvent extraction are often used in the Hterature (2—4). The term polyose is used in Europe to describe these nonceUulosic polysaccharides from wood, whereas hemicellulose is used to describe the alkaline extracts from commercial pulps (4). The quantity of hemicellulose in different sources varies considerably as shown in Table 1. [Pg.29]

Historically, dietary fiber referred to iasoluble plant cell wall material, primarily polysaccharides, not digested by the endogenous enzymes of the human digestive tract. This definition has been extended to iaclude other nondigestible polysaccharides, from plants and other sources, that are iacorporated iato processed foods. Cellulose [9004-34-6] (qv) is fibrous however, lignin [9005-53-2] (qv) and many other polysaccharides ia food do not have fiberlike stmctures (see also Carbohydrates). [Pg.69]

Detergent Methods. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) methods (2), later modified for human foods (13), measure total insoluble plant cell wall material (NDF) and the cellulose—lignin complex (ADF). The easily solubilized pectins and some associated polysaccharides, galactomaimans of legume seeds, various plant gums, and seaweed polysaccharides are extracted away from the NDF. They caimot be recovered easily from the extract, and therefore the soluble fiber fraction is lost. [Pg.71]

As plant cells grow, they deposit new layers of cellulose external to the plasma membrane by exocytosis. The newest regions, which are laid down successively in three layers next to the plasma membrane, are termed the secondary cell wall. Because the latter varies in its chemical composition and structure at different locations around the cell, Golgi-derived vesicles must be guided by the cytoskeleton... [Pg.14]

Plant cell walls are made of bundles of cellulose chains laid down in a cross-hatched pattern that gives cellulose strength in all directions. Hydrogen bonding between the chains gives cellulose a sheetlike structure. [Pg.931]

CelIulose.-Most biologists know that cellulose (l->4-linked P-D-glucan) is a polysaccharide component of all primary and secondary cell walls. Indeed, plant cell walls are... [Pg.48]

In the absence of suitable cell wall mutants, DCB-adapted tomato cells provide an opportunity to characterise the pectin network of the plant cell wall. It should be noted that synthesis and secretion of hemicellulose is not inhibited but, in the absence of a cellulose framework for it to stick to, most of the xyloglucan secreted remains in soluble form in the cells culture medium (9, 10) while other non-cellulosic polysaccharides and other uronic-acid-rich polymers predominate in the wall. [Pg.95]

The primary walls of growing plant cells are composed of 90% carbohydrate and 10% protein (51). Carbohydrate in the primary wall is present predominantly as cellulose, hemicellulose, and pectin. The pectic polysaccharides, are defined as a group of cell wall polymers containing a-l,4-linked D-galactosyluronic acid residues (62,76). Pectic polysaccharides are a major component of the primary cell waU of dicots (22-35%), arc abundant in gymnosperms and non-graminaceous monocots, and are present in reduced amounts (-10%) in the primary walls of the graminaceae (27,62). [Pg.110]

Plant cell walls provide the obvious functions of stmctural support and integrity and can vary tremendously in size, shape, composition and stmcture depending on cell type, age and function within the plant body. Despite this diversity, plant cell walls are composed of only three major classes of polysaccharides cellulose, hemicellulose and pectins. Pectins, or polyuronides, are imbedded throughout the cell wall matrix and are particularly abundant in the middle lamella region. Pectins generally account for 10-30% of the cell wall dry weight and... [Pg.247]

The plant cell wall is a polymeric mesh consisting of cellulose, hemicellulose, pectin and protein. Cellulose and hemicellulose are integral components of the cell wall, but pectic substances are located mainly in the outer wall regions within the middle lamella (McNeil et ai, 1984). Pectic substances are more susceptible to enzymatic degradation, because they are more exposed than other cell wall components. Therefore, pectin-degrading enzymes may play a central role in the penetration of plant tissue by bacteria. [Pg.378]

The plant cell wall contains different types of polysaccharides, proteins (structural glycoproteins and enzymes), lignin and water, as well as some inorganic components (1, 14-16). The plant cell suspensions, however, grow as a population of cells with a primary cell wall(17). The main components of these walls are cellulose-free polysaccharides and pectic polysaccharides in particular, which constitute 1/3 of their dry weight. (18). Some fragments, e g. methanol, acetic, ferulic and p-cumaric acids, are connected with the pectic polysaccharides by ester bonds with the carboxylic and hydroxylic groups. [Pg.871]

Plant cell walls are constructed from cellulose, hemicelluloses, and pectins with varying amounts of lignin, tannins, gums, proteins, minerals,... [Pg.106]

Each cell consists primarily of a membrane, which separates it from the environment, preserves its structural integrity, and keeps it apart from other cells or from the surrounding environment. Plant cells, unlike animal cells, also have, in addition to a cell membrane, a cell wall, composed of cellulose and lignin. The cell wall provides structural strength not only to the vegetable cell itself but to all plant tissues as well. Inside the membrane, the interior of the cell, known as the protoplasm, includes two main... [Pg.287]

The components of the plant cell wall (8-21) are the middle lamella (intercellular substance), the primary wall, and the secondary wall. The middle lamella is the pectic layer between cells and holds adjoining cells together as do membrane carbohydrates. The primary wall is thin (1-3 pm) and flexible containing cellulose, hemicelluloses, pectins, and glycoproteins. This wall provides mechanical strength, maintains cell shape,... [Pg.19]

The word cellulosan has the disadvantages that (a) it employs an ending ordinarily used for designating simple anhydro-sugars, and (b) that the name implies a relation with cellulose, whereas in fact no relationship is intended and polysaccharides placed in this class are quite different from cellulose in both composition and properties. Their connection with cellulose seems to be only that they occur with cellulose as constituents of the plant cell wall. [Pg.283]

Source Adapted from various sources including (i) Wood chemistry , E. Sjostrom, 2nd edition, 1993, p. 52 (ii) Cellulose Biosynthesis , D.F. Delmer, Ann. Rev. Plant Physiol., 1987, 38, 259-290 (iii) Biosynthesis in Plant Cell Walls , D.F. Delmer, in The Biochemistry of Plants , vol. 14, Academic Press, San Diego, 1988, pp. 373-420). [Pg.22]

The largest and most complex carbohydrates are the polysaccharides. They are polymers, long chains of repeating chemical units. Each individual unit is called a monomer. The monomer unit of polysaccharides is the monosaccharide, normally glucose. A typical polysaccharide contains several hundred individual monomers. Examples of common polysaccharides are starches, plant products that are major macronutrients in the human diet, and cellulose, found in plant cell walls. In the human diet, cellulose is referred to as fiber, indigestible but beneficial for normal intestinal motility. More than half of the Earth s total carbon is stored in these two polysaccharides. [Pg.467]


See other pages where Plant cells cellulose walls is mentioned: [Pg.332]    [Pg.243]    [Pg.41]    [Pg.319]    [Pg.3076]    [Pg.119]    [Pg.438]    [Pg.483]    [Pg.236]    [Pg.69]    [Pg.303]    [Pg.33]    [Pg.15]    [Pg.63]    [Pg.203]    [Pg.172]    [Pg.114]    [Pg.192]    [Pg.193]    [Pg.667]    [Pg.281]    [Pg.20]    [Pg.21]    [Pg.220]    [Pg.231]    [Pg.42]    [Pg.520]    [Pg.712]    [Pg.8]    [Pg.11]    [Pg.59]    [Pg.63]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Cellulose cell-walls

Plant cell

Plant walls

Plants cell walls

Plants cellulose

© 2024 chempedia.info