Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption physisorption

Finally, another possibility is an initial physisorption (adsorption without charge transfer) of the adatom when the electrode is put in contact with the solution, the phy-sisorbed species remaining on the surface after rinsing, and the reduction taking place after the first negative scan of the potential. [Pg.212]

If the interaction of the molecule with the surface is weak (Van der Waals forces), the molecule remains unchanged regarding its binding structure, oxidation state and number of ligands. This is typical for physisorption. Adsorption processes of molecules with non saturated coordinations show much stronger interactions. These adsorption processes are accompanied by changes of the coordination number of the central atom and, in some cases,... [Pg.228]

For temperatures ranging from 300 to 363 K, values of isosteric heat of adsorption in range of 40 to 44 kj/mol were obtained for o-xylene loading between 100 and 250 pmol/g corresponding to a coverage between O.O5<0. 125 (0=nads/nadsm/Where nads is the adsorbed amount and nads m is the adsorbed amount at monolayer). Nevertheless, these values do not exceed the heat of vaporization (55 kj/mole) (CRC Handbook, 1985) indicating a weak physisorption adsorption. [Pg.429]

This model was successfully applied to reproduce experimental adsorption data for noble gases on metal surfaces. Furthermore, this model was empirically extended in [16] to predict adsorption enthalpies of the elements Rn, Cn, and FI on metal surfaces, assuming a physisorptive adsorption see Fig. 9. Please note that two different dipole polarizabilities of Cn as given in the literature lead to two slightly different predictions for the Cn (I, II) adsorption enthalpy on gold, based on correlation depicted in Fig. 9 (upper panel) see Table 5. Experimental adsorption data measured for Rn on various metal surfaces [16] revealed a fairly good agreement with these predictions. [Pg.406]

Infrared Spectroscopy. The infrared spectroscopy of adsorbates has been studied for many years, especially for chemisorbed species (see Section XVIII-2C). In the case of physisorption, where the molecule remains intact, one is interested in how the molecular symmetry is altered on adsorption. Perhaps the conceptually simplest case is that of H2 on NaCl(lOO). Being homo-polar, Ha by itself has no allowed vibrational absorption (except for some weak collision-induced transitions) but when adsorbed, the reduced symmetry allows a vibrational spectrum to be observed. Fig. XVII-16 shows the infrared spectrum at 30 K for various degrees of monolayer coverage [96] (the adsorption is Langmuirian with half-coverage at about 10 atm). The bands labeled sf are for transitions of H2 on a smooth face and are from the 7 = 0 and J = 1 rotational states Q /fR) is assigned as a combination band. The bands labeled... [Pg.634]

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

The energies of the selective adsorption resonances are very sensitive to the details of the physisorption potential. Accurate measurement allied to computation of bound state energies can be used to obtain a very accurate quantitative fonn for the physisorption potential, as has been demonstrated for helium atom scattering. For molecules, we have... [Pg.903]

The hydrophobic character exhibited by dehydroxylated silica is not shared by the metal oxides on which detailed adsorption studies have been made, in particular the oxides of Al, Cr, Fe, Mg, Ti and Zn. With these oxides, the progressive removal of chemisorbed water leads to an increase, rather than a decrease, in the affinity for water. In recent years much attention has been devoted, notably by use of spectroscopic and adsorption techniques, to the elucidation of the mechanism of the physisorption and chemisorption of water by those oxides the following brief account brings out some of the salient features. [Pg.274]

The first stage in the interpretation of a physisorption isotherm is to identify the isotherm type and hence the nature of the adsorption process(es) monolayer-multilayer adsorption, capillary condensation or micropore filling. If the isotherm exhibits low-pressure hysteresis (i.e. at p/p° < 0 4, with nitrogen at 77 K) the technique should be checked to establish the degree of accuracy and reproducibility of the measurements. In certain cases it is possible to relate the hysteresis loop to the morphology of the adsorbent (e.g. a Type B loop can be associated with slit-shaped pores or platey particles). [Pg.285]

Chemical Potential. Equilibrium calculations are based on the equaHty of individual chemical potentials (and fiigacities) between phases in contact (10). In gas—soHd adsorption, the equiHbrium state can be defined in terms of an adsorption potential, which is an extension of the chemical potential concept to pore-filling (physisorption) onto microporous soHds (11—16). [Pg.232]

When gaseous or liquid molecules adhere to thesurface of the adsorbent by means of a chemical reaction and the formation of chemical bonds, the phenomenon is called chemical adsorption or chemisorption. Heat releases of 10 to 100 kcal/g-mol are typical for chemisorption, which are much higher than the heat release for physisorption. With chemical adsorption, regeneration is often either difficult or impossible. Chemisorption usually occurs only at temperatures greater than 200 C when the activation energy is available to make or break chemical bonds. [Pg.276]

Physisorption occurs when, as a result of energy differences and/or electrical attractive forces (weak van der Waals forces), the adsorbate molecules become physically fastened to the adsorbent molecules. This type of adsorption is multilayered that is, each molecular layer forms on top of the previous layer with the number of layers being proportional to the contaminant concentration. More molecular layers form with higher concentrations of contaminant in solution. When a chemical compound is produced by the reaction between the adsorbed molecule and the adsorbent, chemisorption occurs. Unlike physisorption, this process is one molecule thick and irreversible... [Pg.138]

The strength of the adsorptive interaction as expressed in values of AG jj depends on the mode of interaction between the adsorbate molecule and the electrode surface. Weak adsorption (physisorption) is based mostly on van-der-Waals-interactions. It shows t5q)ically values of AG jj > - 20 kJ mol Stronger... [Pg.239]

As noted before, thin film lubrication (TFL) is a transition lubrication state between the elastohydrodynamic lubrication (EHL) and the boundary lubrication (BL). It is widely accepted that in addition to piezo-viscous effect and solid elastic deformation, EHL is featured with viscous fluid films and it is based upon a continuum mechanism. Boundary lubrication, however, featured with adsorption films, is either due to physisorption or chemisorption, and it is based on surface physical/chemical properties [14]. It will be of great importance to bridge the gap between EHL and BL regarding the work mechanism and study methods, by considering TFL as a specihc lubrication state. In TFL modeling, the microstructure of the fluids and the surface effects are two major factors to be taken into consideration. [Pg.64]

The potential of MIL-47 and MIL-53(A1) for adsorption of other types of aromatic adsorbates has also been explored, for instance, of dichlorobenzene, cresol, or alkylnaphthalene isomers [17, 98]. The removal of sulfur-containing aromatics from fuels via physisorption on MOFs has been investigated on several instances in literature, for instance, via the selective removal of thiophene from a stream of methane gas by MIL-47 [99], the removal of tetrahydrothiophene from methane by... [Pg.87]

Figure 6.4 Features of beta zeolite after Fenton treatment, (a) Saito-Foley adsorption pore-size distribution from Ar-physisorption for (O) parent zeolite containing the template (no porosity) ( ) Fenton-detemplated and (V) commercial NH4-form BEA. Figure 6.4 Features of beta zeolite after Fenton treatment, (a) Saito-Foley adsorption pore-size distribution from Ar-physisorption for (O) parent zeolite containing the template (no porosity) ( ) Fenton-detemplated and (V) commercial NH4-form BEA.
Physisorption at interfaces, for example, electrostatic adsorption of charged particles at oppositely charged substrates [14,15,20,23-25,85-117]... [Pg.214]

In addition to the preparation of Langmuir and Langmuir-Blodgett films, the use of self-assembly techniques also plays an important role in the formation of particle films. Both physisorption, as, for example, electrostatic adsorption of charged particles from colloidal solution, and chemisorption onto a substrate have been investigated. In Section V.A, electrostatic adsorption will be reviewed chemisorption is the subject of Section V.B. [Pg.228]

Figure 5.19 shows an idealized form of the adsorption isotherm for physisorption on a nonporous or macroporous solid. At low pressures the surface is only partially occupied by the gas, until at higher pressures (point B on the curve) the monolayer is filled and the isotherm reaches a plateau. This part of the isotherm, from zero pressures to the point B, is equivalent to the Langmuir isotherm. At higher pressures a second layer starts to form, followed by unrestricted multilayer formation, which is in fact equivalent to condensation, i.e. formation of a liquid layer. In the jargon of physisorption (approved by lUPAC) this is a Type II adsorption isotherm. If a system contains predominantly micropores, i.e. a zeolite or an ultrahigh surface area carbon (>1000 m g ), multilayer formation is limited by the size of the pores. [Pg.188]

The chemistry of superheavy elements has made some considerable progress in the last decade [457]. As the recently synthesized elements with nuclear charge 112 (eka-Hg), 114 (eka-Pb) and 118 (eka-Rn) are predicted to be chemically quite inert [458], experiments on these elements focus on adsorption studies on metal surfaces like gold [459]. DFT calculations predict that the equilibrium adsorption temperature for element 112 is predicted 100 °C below that of Hg, and the reactivity of element 112 is expected to be somewhere between those of Hg and Rn [460, 461]. This is somewhat in contradiction to recent experiments [459], and DFT may not be able to simulate accurately the physisorption of element 112 on gold. More accurate wavefunction based methods are needed to clarify this situation. Similar experiments are planned for element 114. [Pg.220]

It is most convenient to explain catalysis using an example. We have chosen a hydrogenation catalysed by nickel in the metallic state. According to the schematic of Fig. 3.1 the first step in the actual catalysis is adsorption . It is useful to distinguish physisorption and chemisorption . In the former case weak, physical forces and in the latter case relatively strong, chemical forces play a role. When the molecules adsorb at an active site physisorption or chemisorption can occur. In catalysis often physisorption followed by chemisorption is the start of the catalytic cycle. This can be understood from Fig. 3.2, which illustrates the adsorption of hydrogen on a nickel surface. [Pg.62]

The surface area and the dimensions and volume of the pores can be determined in many ways. A convenient method is based on measurement of the capacity for adsorption. The experimental techniques do not differ from those used for chemisorption (see Section 3.6.3). The fundamental difference between physi.sorption and chemisorption is that in chemisorption chemical bonds are formed, and, as a consequence, the number of specific sites is measured, whereas in physisorption the bonds are weak so that non-chemical properties, in particular the surface area, are determined. [Pg.97]

Usually, physisorption is carried out using nitrogen as an adsorbate at 77.3 K, the boiling point of liquid nitrogen. The solid material is called the adsorbent. Adsorption can be measured in many different ways. So-called volumetric adsorption, in which volumes of gas are introduced. sequentially while simultaneously measuring the pressure, is a commonly used technique. Fig. 3.41 shows a schematic of the equipment used (referred to as barometric equipment ). [Pg.97]

The theoretical base for the assumption of Langmuir adsorption in physisorption can be... [Pg.99]

Titrations of carbon monoxide and hydrogen sulfide up to 800 torr were performed at 30°C each volumetric titration was composed of two adsorption isotherms the first isotherm was a combination of chemisorption and physisorption. [Pg.137]

The adsorption action of activated carbon may be explained in terms of the surface tension (or energy per unit surface area) exhibited by the activated particles whose specific surface area is very large. The molecules on the surface of the particles are subjected to unbalanced forces due to unsatisfied bonds and this is responsible for the attachment of other molecules to the surface. The attractive forces are, however, relatively weak and short range, and are called Van der Waals forces, and the adsorption process under these conditions is termed as a physical adsorption (physisorption) process. In this case, the adsorbed molecules are readily desorbed from the surface. Adsorption resulting from chemical interaction with surface molecules is termed as chemisorption. In contrast to the physical process described for the adsorption on carbon, the chemisorption process is characterized by stronger forces and irreversibility. It may, however, be mentioned that many adsorption phenomena involve both physical and chemical processes. They are, therefore, not easily classified, and the general term, sorption, is used to designate the mechanism of the process. [Pg.507]


See other pages where Adsorption physisorption is mentioned: [Pg.7]    [Pg.337]    [Pg.177]    [Pg.178]    [Pg.401]    [Pg.7]    [Pg.337]    [Pg.177]    [Pg.178]    [Pg.401]    [Pg.406]    [Pg.571]    [Pg.634]    [Pg.634]    [Pg.296]    [Pg.901]    [Pg.903]    [Pg.904]    [Pg.1870]    [Pg.276]    [Pg.12]    [Pg.276]    [Pg.138]    [Pg.317]    [Pg.337]    [Pg.601]    [Pg.105]    [Pg.250]    [Pg.231]    [Pg.48]   


SEARCH



Adsorption mechanisms physisorption

Hydrogen adsorption physisorption

Liquid adsorption, physisorption mechanisms

Physical Adsorption or Physisorption

Physisorption

© 2024 chempedia.info