Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoric Additives

When 0.5% of 1-propylphosphonic acid cyclic anhydride is incorporated into the blank electrolyte, the capacity retention of graphite/LiNio,5Coo,2Mno,302 battery at high voltage after 100 cycles is increased from 79.12% to 91.84%. [Pg.79]

X-ray diffraction (XRD), and XPS revealed a mechanism in which the surface film derived from the anhydride can decrease the [Pg.79]

Unit cells with 0.1% of 2-(triphenylphosphoranylidene) succinic anhydride achieved a 43% capacity retention increase at high temperature operation, i.e., 55°C, 100 cycles, C/2 rate, in comparison to a control group without the additive, in order to understand the underlying principle of the enhanced capacity retention ability of the unit cells. [Pg.80]

Ever since lithium-ion batteries were first introduced on the market in 1991, their safety risks were already receiving a lot of attention (68). One of the main safety concerns is due to the usage of a highly flammable electrolyte due to the organic solvents combined with a [Pg.80]

A standard Li-ion battery electrolyte with different concentrations of the flame retardant triphenyl phosphate for high-power applications has been tested (68). The electrolyte characterization shows only a minor decrease in the electrolyte flammability for low triphenyl phosphate concentrations. The addition of triphenyl phosphate to the electrolyte leads to an increased viscosity and a decreased conductivity. The solvation of the lithium-ion charge carriers may be directly affected by the addition of triphenyl phosphate. This was found by Raman spectroscopy measurements and an increased mass transport resistivity. [Pg.81]


OSL could also be used for container verification. Luminescent phosphor additives, ionized by radiation, are mixed with paints or clear coats and are applied to the surface of a container (Miller et al. 2009). The OSL phosphors luminesce in proportion to the ionization radiation dose and the intensity of excitation light. The OSL coatings/additives will be invisible to the naked eye, but could be seen using an InGaAs infrared detector. The OSL additives would tag the container and reveal an attempt to tamper with the container and therefore increase the confidence that its integrity had not been compromised. [Pg.2945]

Processing stabilization of polyethylene is usually done by a combination of phenolic and phosphorous antioxidants. A phosphate stabilizer used in the absence of a phenolic antioxidant imparts very low oxidative stability to polyethylene. When hindered phenols are used in combination with phosphites or phosphonites, the melt flow behavior during processing and the thermo-oxidative stability of the polymer improve significantly. Fearon et al. [17] attributed the positive effect of phenolic antioxidants to their interaction with peroxides. The trivalent phosphorous additives often help to improve the color of polymers [18-21]. [Pg.43]

Many phosphorous additives act as flame retardants in this way in hydroxyl containing polymers such as cellulose. During the polymer degradation process, phosphorus acids are produced which lead to char via phosphorylation and dehydration reactions. Relatively low quantities of phosphorus compounds are needed to impart a reasonable degree of flame retardancy. Several boron additives behave in a similar way by the promotion of carbonaceous char through esterification and dehydration reactions. [Pg.265]

Phosphoric esters, not common as bases, but used as additives. [Pg.279]

Anti-wear and extreme pressure additives phosphoric esters, dithiophosphates, sulfur-containing products such as fatty esters and sulfided terpenes or chlorinated products such as chlorinated paraffins. [Pg.279]

The formation of an insoluble film of barium sulphate soon causes the reaction to cease, but addition of a tittle hydrochloric acid or better phosphoric(V) acid to the sulphuric acid allows the reaction to continue. [Pg.277]

Mixed with additives, urea is used in soHd fertilizers of various formulations, eg, urea—ammonium phosphate (UAP), urea—ammonium sulfate (UAS), and urea—phosphate (urea + phosphoric acid). Concentrated solutions of urea and ammonium nitrate (UAN) solutions (80—85 wt%) have a high nitrogen content but low crystallization point, suitable for easy transportation, pipeline distribution, and direct spray appHcation. [Pg.310]

Minerals. Supplementation of macrominerals to mminants is sometimes necessary. Calcium and phosphoms are the minerals most often supplemented in mminant diets. One or both may be deficient, and the level of one affects the utilization of the other. Limestone, 36% calcium, is commonly used as a source of supplemental calcium. Dolomite, 22% calcium oyster sheUs, 35% calcium and gypsum, 29% calcium, are sources of calcium. Bone meal, 29% calcium, 14% phosphoms dicalcium phosphate, 25—28% calcium, 18—21% phosphoms and defluorinated rock phosphate, 32% calcium, 18% phosphoms, are sources of both calcium and phosphoms. Diammonium phosphate, 25% phosphoms phosphoric acid, 32% phosphoms sodium phosphate, 22% phosphoms and sodium tripolyphosphate, 31% phosphoms, are additional sources of phosphoms (5). [Pg.156]

Triple (Concentrated) Superphosphate. The first important use of phosphoric acid in fertilizer processing was in the production of triple superphosphate (TSP), sometimes called concentrated superphosphate. Basically, the production process for this material is the same as that for normal superphosphate, except that the reactants are phosphate rock and phosphoric acid instead of phosphate rock and sulfuric acid. The phosphoric acid, like sulfuric acid, solubilizes the rock and, in addition, contributes its own content of soluble phosphoms. The result is triple superphosphate of 45—47% P2 s content as compared to 16—20% P2 5 normal superphosphate. Although triple superphosphate has been known almost as long as normal superphosphate, it did not reach commercial importance until the late 1940s, when commercial supply of acid became available. [Pg.226]

Nitrophosphates are made by acidulating phosphate rock with nitric acid followed by ammoniation, addition of potash as desired, and granulation or prilling of the slurry. The acidulate, prior to ammoniation, contains calcium nitrate and phosphoric acid or monocalcium phosphate according to the foUowiag equations ... [Pg.231]

The FCC is to food-additive chemicals what the USP—NF is to dmgs. In fact, many chemicals that are used in dmgs also are food additives (qv) and thus may have monographs in both the USP—NF and in the FCC. Examples of food-additive chemicals are ascorbic acid [50-81-7] (see Vitamins), butylated hydroxytoluene [128-37-0] (BHT) (see Antioxidants), calcium chloride [10043-52-4] (see Calcium compounds), ethyl vanillin [121-32-4] (see Vanillin), ferrous fumarate [7705-12-6] and ferrous sulfate [7720-78-7] (see Iron compounds), niacin [59-67-6] sodium chloride [7647-14-5] sodium hydroxide [1310-73-2] (see lkaliand cm ORiNE products), sodium phosphate dibasic [7558-79-4] (see Phosphoric acids and phosphates), spearmint oil [8008-79-5] (see Oils, essential), tartaric acid [133-37-9] (see Hydroxy dicarboxylic acids), tragacanth [9000-65-1] (see Gums), and vitamin A [11103-57-4]. [Pg.446]

A newer self-intumescent phosphoric acid salt has been introduced by Albright WHson as Amgard EDAP, mainly as an additive for polyolefins. It is a finely divided soHd, mp 250°C, having a reported phosphoms content of 63 wt % as H PO. It appears to be the ethylenediamine salt of phosphoric acid (1 1). Unlike ammonium polyphosphate, it does not require a char-forming synergist (62). [Pg.476]

The third process involves careflil addition of aluminum hydroxide to fluorosiUcic acid (6) which is generated by fertilizer and phosphoric acid-producing plants. The addition of Al(OH)2 is critical. It must be added gradually and slowly so that the siUca produced as by-product remains filterable and the AIF. -3H20 formed is in the soluble a-form. If the addition of Al(OH)2 3H20 is too slow, the a-form after some time changes into the insoluble P-form. Then separation of siUca from insoluble P-AIF. -3H20 becomes difficult. [Pg.140]

The large amount of fluorine values released from phosphate rock in the manufacture of fertilisers (qv) gives a strong impetus to develop fluorine chemicals production from this source (see Phosphoric acid and the phosphates). Additional incentive comes from the need to control the emission of fluorine-containing gases. Most of the fluorine values are scmbbed out as fluorosiUcic acid, H2SiPg, which has limited useflilness. A procedure to convert fluorosihcic acid to calcium fluoride is available (61). [Pg.173]

Hexafluorophosphoric Acid. Hexafluorophosphoric acid (3) is present under ambient conditions only as an aqueous solution because the anhydrous acid dissociates rapidly to HF and PF at 25°C (56). The commercially available HPF is approximately 60% HPF based on PF analysis with HF, HPO2F2, HPO F, and H PO ia equiUbrium equivalent to about 11% additional HPF. The acid is a colorless Hquid which fumes considerably owiag to formation of an HF aerosol. Frequently, the commercially available acid has a dark honey color which is thought to be reduced phosphate species. This color can be removed by oxidation with a small amount of nitric acid. When the hexafluorophosphoric acid is diluted, it slowly hydrolyzes to the other fluorophosphoric acids and finally phosphoric acid. In concentrated solutions, the hexafluorophosphoric acid estabUshes equiUbrium with its hydrolysis products ia relatively low concentration. Hexafluorophosphoric acid hexahydrate [40209-76-5] 6 P 31.5°C, also forms (66). This... [Pg.226]

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Suitable catalysts include the hydroxides of sodium (119), potassium (76,120), calcium (121—125), and barium (126—130). Many of these catalysts are susceptible to alkali dissolution by both acetone and DAA and yield a cmde product that contains acetone, DAA, and traces of catalyst. To stabilize DAA the solution is first neutralized with phosphoric acid (131) or dibasic acid (132). Recycled acetone can then be stripped overhead under vacuum conditions, and DAA further purified by vacuum topping and tailing. Commercial catalysts generally have a life of about one year and can be reactivated by washing with hot water and acetone (133). It is reported (134) that the addition of 0.2—2 wt % methanol, ethanol, or 2-propanol to a calcium hydroxide catalyst helps prevent catalyst aging. Research has reported the use of more mechanically stable anion-exchange resins as catalysts (135—137). The addition of trace methanol to the acetone feed is beneficial for the reaction over anion-exchange resins (138). [Pg.493]

Lanthanide luminescence apphcations have already reached industrial levels of consumption. Additionally, the strongly specific nature of the rare-earths energy emissions has also led to extensive work in several areas such as photostimulable phosphors, lasers (qv), dosimetry, and fluorescent immunoassay (qv) (33). [Pg.547]

Phosphors usually contain activator ions in addition to the host material. These ions are dehberately added in the proper proportion during the synthesis. The activators and their surrounding ions form the active optical centers. Table 1 Hsts some commonly used activator ions. Some soflds, made up of complexes such as calcium tungstate [7790-75-2] CaWO, are self-activated. Also in many photolurninescence phosphors, the primary activator does not efficiently absorb the exciting radiation and a second impurity ion is introduced known as the sensitizer. The sensitizer, which is an activator ion itself, absorbs the exciting radiation and transfers this energy to the primary activator. [Pg.284]

The lanthanum phosphate phosphor is usually prepared by starting with a highly purified coprecipitated oxide of lanthanum, cerium, and terbium blended with a slight excess of the stoichiometric amount of diammonium acid phosphate. Unlike the case of the aluminate phosphor, firing is carried out in an only slightly reducing or a neutral atmosphere of nitrogen at a temperature 1000° C. Also this phosphor is typically made with the addition of a flux,... [Pg.291]


See other pages where Phosphoric Additives is mentioned: [Pg.273]    [Pg.106]    [Pg.29]    [Pg.209]    [Pg.404]    [Pg.2766]    [Pg.104]    [Pg.277]    [Pg.277]    [Pg.79]    [Pg.273]    [Pg.106]    [Pg.29]    [Pg.209]    [Pg.404]    [Pg.2766]    [Pg.104]    [Pg.277]    [Pg.277]    [Pg.79]    [Pg.307]    [Pg.114]    [Pg.1379]    [Pg.407]    [Pg.160]    [Pg.105]    [Pg.450]    [Pg.230]    [Pg.231]    [Pg.234]    [Pg.235]    [Pg.241]    [Pg.242]    [Pg.489]    [Pg.281]    [Pg.123]    [Pg.516]    [Pg.466]    [Pg.285]    [Pg.286]   


SEARCH



© 2024 chempedia.info