Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphatidylethanolamine synthesis

Phosphatidylethanolamine synthesis begins with phosphorylation of ethanol-amine to form phosphoethanolamine (Figure 25.19). The next reaction involves transfer of a cytidylyl group from CTP to form CDP-ethanolamine and pyrophosphate. As always, PP, hydrolysis drives this reaction forward. A specific phosphoethanolamine transferase then links phosphoethanolamine to the diacylglycerol backbone. Biosynthesis of phosphatidylcholine is entirely analogous because animals synthesize it directly. All of the choline utilized in this pathway must be acquired from the diet. Yeast, certain bacteria, and animal livers, however, can convert phosphatidylethanolamine to phosphatidylcholine by methylation reactions involving S-adenosylmethionine (see Chapter 26). [Pg.821]

Figure 2. Effect of Ca-ceramide on phosphatidylcholine and phosphatidylethanolamine synthesis in rat-2 fibroblasts. Cells were treated for 2 h in the absence (open bars) or presence (hatched bars) of 25pM C6-ceramide and the following parameters were determined i) the incorporation of [ H]choline and [ H]ethanolamine into phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively (panel A) and in CDP-choline and CDP-ethanolamine, respectively (panel B) and ii) the in vitro activity of choline- and ethanolaminephosphotransferase (CPT and EPT) (panel C). Figure 2. Effect of Ca-ceramide on phosphatidylcholine and phosphatidylethanolamine synthesis in rat-2 fibroblasts. Cells were treated for 2 h in the absence (open bars) or presence (hatched bars) of 25pM C6-ceramide and the following parameters were determined i) the incorporation of [ H]choline and [ H]ethanolamine into phosphatidylcholine (PC) and phosphatidylethanolamine (PE), respectively (panel A) and in CDP-choline and CDP-ethanolamine, respectively (panel B) and ii) the in vitro activity of choline- and ethanolaminephosphotransferase (CPT and EPT) (panel C).
Diminished phosphatidylethanolamine synthesis is not known to lead to apoptosis... [Pg.219]

FIGURE 21-28 Pathway for phosphatidylcholine synthesis from choline in mammals. The same strategy shown here (strategy 2 in Fig. 21-24) is also used for salvaging ethanolamine in phosphatidylethanolamine synthesis. [Pg.812]

Although the role of lipid composition in membrane function is not entirely understood, changes in composition can produce dramatic effects. Researchers have isolated fruit flies with mutations in the gene that encodes ethanolamine kinase (analogous to choline kinase Fig. 21-28). Lack of this enzyme eliminates one pathway for phosphatidylethanolamine synthesis, thereby reducing the amount of this lipid in cellular membranes. Flies with this mutation—those with the genotype easily shocked—exhibit transient paralysis following electrical stimulation or mechanical shock that would not affect wild-type flies. [Pg.813]

The syntheses of phosphatidylethanolamine and phosphatidylcholine are similar (Figure 12.17). Phosphatidylethanolamine synthesis begins in the cytoplasm... [Pg.401]

P NMR spectra can reflect the energetic status of cells (quantitation of ATP, PCr, Pi) the chemical shift of Pi depends on the intracellular pH, which can be measured in this way [35]. By use of C-labelled substrates, the kinetics of phosphatidylethanolamine synthesis has been studied by C NMR spectroscopy of extracts of lymphomatous mouse liver following the administration of C2-ethanoloamine [36]. [Pg.272]

Sparace S.A., Wagner L.K. and Moore T.S. (1981) Phosphatidylethanolamine synthesis in castor bean endosperm. Plant Physiol 67 922-925. [Pg.136]

WangX. and Moore T.S. (1991) Phosphatidylethanolamine synthesis by castor bean endosperm. Intracellular distribution and characteristics of CTP.ethanolamine-phosphate cytidylyltransferase, J. Biol Chem. 266 19981-19987. [Pg.136]

Shin S, Moore TS. Phosphatidylethanolamine synthesis by castor bean endosperm, membrane bilayer distribution of phosphatidylethanolamine synthesized by the ethanolaminephosphotransferase and ethanolamine exchange reactions. Plant Physiol 1990 93 154-159. [Pg.218]

Phosphatidylethanolamine can also be formed by an analogous series of reactions to phosphatidylcholine that is by the successive actions of ethanolamine kinase, ethanolamine phosphate cytidylyltransferase and ethanolamine phosphotransferase (Figure 7.1). As in the synthesis of phosphatidylcholine, the activity of the cytidyltransferase appears to be rate limiting for phosphatidylethanolamine synthesis and also the final enzyme, the ethanolamine phosphotransferase, catalyses a freely reversible reaction. [Pg.299]

Write a balanced, stoichiometric reaction for the synthesis of phosphatidylethanolamine from glycerol, fatty acyl-CoA, and ethanolamine. Make an estimate of the AG° for the overall process. [Pg.850]

The regulation of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine biosynthesis is driven by the availability of free fatty acids. Those that escape oxidation are preferentiaUy converted to phos-phohpids, and when this requirement is satisfied they are used for triacylglycerol synthesis. [Pg.199]

Materials. Egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) were obtained from Avanti Polar Lipids Inc. (Birmingham, AL) and cholesterol was from Sigma (St. Louis, MO). Ganglioside GMj, bovine, was obtained from Calbiochem (San Diego, CA). Diethylenetriamine pentaacetic acid distearylamide complex (DPTA-SA) was synthesized according to ref. 17 and nlIn-DTPA-SA was prepared as described (7). This lipophilic radiolabel is not transferred to the serum components from liposomes (unpublished data), nor is it rapidly metabolized in vivo (7). The synthesis of N-(glutaryl)phosphatidylethanolamine(NGPE) has been described (18). Dipalmitoyl deoxyfluorouridine(dpFUdR) was synthesized as described (24). [Pg.274]

Therefore, it is currently believed that anandamide is formed from membrane phospholipids (Fig. 4) through a pathway that involves (1) a trans-acylation of the amino group of phosphatidylethanolamine with arachidonate from the sn-1 position of phosphatidylcholine and (2) a D-type phosphodiesterase activity on the resulting A-arachidonylphosphati-dylethanolamide (NAPE). Synthesis of anandamide is presumably regulated at the levels of both enzymes, the A-acyltranferase and the phospholipase D, by stimuli that raise intracellular calcium or by receptors linked with cAMP and PKA. It has been shown that anandamide is formed when neurons are depolarized and, therefore, the intracellular calcium ion levels are elevated (Cadas, 1996). [Pg.106]

Anandamide is believed to be synthesized from a phospholipid precursor, /V-arachidonoyl-phosphatidylethanolamine, catalysed by phospholipase D (Di Marzo et al. 1998). The other proposed route of synthesis is from condensation of arachidonic acid and ethanolamine, although this has yet to be demonstrated in living cells. 2-AG is formed in a calcium-dependent manner, and mediated by the enzymes phospholipase C and diacylglycerol lipase (Kondo et al. 1998 Stella et al. 1997). [Pg.412]

Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane. Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane.
Figure 1. Synthetic pathway for PS and PE in mammalian cells. The major steps occuring in the synthesis and interconversion of PS and PE are shown. The PS synthases condense serine with a phosphatidyl moiety derived from PC and PE. The nascent PS can be converted to PE by decarboxylation. PE can also be formed by transfer of a phosphoethanolamine moiety from CDP-ethanolamine to diacylglycerol via the Kennedy pathway. The abbreviations used are PC, phosphatidylcholine PS, phosphatidylserine PE, phosphatidylethanolamine DG, diacylglycerol PSD, phosphatidylserine decarboxylase PSS, PS synthase. Figure 1. Synthetic pathway for PS and PE in mammalian cells. The major steps occuring in the synthesis and interconversion of PS and PE are shown. The PS synthases condense serine with a phosphatidyl moiety derived from PC and PE. The nascent PS can be converted to PE by decarboxylation. PE can also be formed by transfer of a phosphoethanolamine moiety from CDP-ethanolamine to diacylglycerol via the Kennedy pathway. The abbreviations used are PC, phosphatidylcholine PS, phosphatidylserine PE, phosphatidylethanolamine DG, diacylglycerol PSD, phosphatidylserine decarboxylase PSS, PS synthase.
Vance, J.E., Aasman, E.J., and Szarka, R., 1991, Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem. 266 8241-8247. [Pg.77]

Figure 1. Pathways for the synthesis of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. Abbreviations CK, choline kinase CPT, cholinephosphotransferase CT, CTP phosphooholine cytidylyltransferase DAG, diacylglycerol PC, phosphatidylcholine PE, phosphatidylethanolamine PEMT, phosphatidylethanolamine-N-methyltransferase SM, sphingomyelin SMase, sphingomyelinase SMsyn, sphingomyelin synthase. Figure 1. Pathways for the synthesis of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. Abbreviations CK, choline kinase CPT, cholinephosphotransferase CT, CTP phosphooholine cytidylyltransferase DAG, diacylglycerol PC, phosphatidylcholine PE, phosphatidylethanolamine PEMT, phosphatidylethanolamine-N-methyltransferase SM, sphingomyelin SMase, sphingomyelinase SMsyn, sphingomyelin synthase.
A minor pathway to synthesize PC, which is mainly active in liver cells, utilizes the enzyme phosphatidylethanolamine-A-methyltransferase (PEMT), which converts phosphatidylethanolamine (PE) to PC by the subsequent transfer of three methyl groups from S-adenosylmethionine (Vance et al, 1997). The PEMT pathway, which links PE synthesis to PC, was found to be critical for PC homeostasis in the Uver dining choline deficiency (Walkey et al, 1997). [Pg.209]

Figure 11.21 Outline of synthesis of phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine. Note in the synthesis of phosphatidylinositol, the free base, inositol, is used directly. Inositol is produced in the phosphatase reactions that hydrolyse and inactivate the messenger molecule, inositol trisphosphate (IP3). This pathway recycles inositol, so that it is unlikely to be limiting for the formation of phosphatidylinositol bisphosphate (PIP )- This is important since inhibition of recycling is used to treat bipolar disease (mania) (Chapter 12, Figure 12.9). Full details of the pathway are presented in Appendix 11.5. Inositol, along with choline, is classified as a possible vitamin (Table 15.3). Figure 11.21 Outline of synthesis of phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine. Note in the synthesis of phosphatidylinositol, the free base, inositol, is used directly. Inositol is produced in the phosphatase reactions that hydrolyse and inactivate the messenger molecule, inositol trisphosphate (IP3). This pathway recycles inositol, so that it is unlikely to be limiting for the formation of phosphatidylinositol bisphosphate (PIP )- This is important since inhibition of recycling is used to treat bipolar disease (mania) (Chapter 12, Figure 12.9). Full details of the pathway are presented in Appendix 11.5. Inositol, along with choline, is classified as a possible vitamin (Table 15.3).
In mammals, phosphatidylserine is not synthesized from CDP-diacylglycerol instead, it is derived from phosphatidylethanolamine via the head-group exchange reaction (Fig. 21-27). Synthesis of phosphatidylethanolamine and phosphatidylcholine in mammals occurs by strategy 2 of Figure 21-24 phosphorylation and activation of the head group, followed by condensation with... [Pg.812]

Yeast pathways for the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol are similar to those in bacteria phosphatidylcholine is formed by methylation of phosphatidylethanolamine. [Pg.815]

Source of choline and ethanolamine used for phospholipid synthesis Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the most abundant phospholipids in most eukaryotic cells. The primary route of their synthesis uses choline and ethanolamine obtained either from the diet or from the turnover of the body s phospholipids. Because the amount of choline the body makes is insufficient for its need, choline is an essential dietary nutrient. [Pg.486]

The phospholipids in milk are synthesized by the mammary cell via pathways that are common to other mammalian cells. For further information on the synthesis of phospholipids in the mammary cell, see Kinsella and Infante (1978) and Patton and Jensen (1976). The major glycerophospholipids are phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. A more complete composition is given in Table 4.6, Patton and Jensen (1976). The acyl and alkyl compositions will be given later. In milk, the glycerophospholipids are found predominantly in the diacyl form. However, small... [Pg.185]

Many of the proteins of membranes are enzymes. For example, the entire electron transport system of mitochondria (Chapter 18) is embedded in membranes and a number of highly lipid-soluble enzymes have been isolated. Examples are phosphatidylseiine decarboxylase, which converts phosphatidylserine to phosphatidylethanolamine in biosynthesis of the latter, and isoprenoid alcohol phosphokinase, which participates in bacterial cell wall synthesis (Chapter 20). A number of ectoenzymes are present predominantly on the outsides of cell membranes.329 Enzymes such as phospholipases (Chapter 12), which are present on membrane surfaces, often are relatively inactive when removed from the lipid environment but are active in the presence of phospholipid bilay-ers.330 33 The distribution of lipid chain lengths as well as the cholesterol content of the membrane can affect enzymatic activities.332... [Pg.409]

Figure 21-3 Major pathways of synthesis of fatty acids and glycerolipids in the green plant Arabidopsis. The major site of fatty acid synthesis is chloroplasts. Most is exported to the cytosol as oleic acid (18 1). After conversion to its coenzyme A derivative it is converted to phosphatidic acid (PA), diacylglycerol (DAG), and the phospholipids phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). Desaturation also occurs, and some linoleic and linolenic acids are returned to the chloroplasts. See text also. From Sommerville and Browse.106 See also Figs. 21-4 and 21-5. Other abbreviations monogalactosyldiacylglycerol (MGD), digalactosyldiacylglycerol (DGD), sulfolipid (SL), glycerol 3-phosphate (G3P), lysophosphatidic acid (LPA), acyl carrier protein (ACP), cytidine diphosphate-DAG (CDP-DAG). Figure 21-3 Major pathways of synthesis of fatty acids and glycerolipids in the green plant Arabidopsis. The major site of fatty acid synthesis is chloroplasts. Most is exported to the cytosol as oleic acid (18 1). After conversion to its coenzyme A derivative it is converted to phosphatidic acid (PA), diacylglycerol (DAG), and the phospholipids phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE). Desaturation also occurs, and some linoleic and linolenic acids are returned to the chloroplasts. See text also. From Sommerville and Browse.106 See also Figs. 21-4 and 21-5. Other abbreviations monogalactosyldiacylglycerol (MGD), digalactosyldiacylglycerol (DGD), sulfolipid (SL), glycerol 3-phosphate (G3P), lysophosphatidic acid (LPA), acyl carrier protein (ACP), cytidine diphosphate-DAG (CDP-DAG).
The formation of phosphatidylserine and possibly other phospholipids in animal tissues may also be accomplished by exchange reactions (Eq. 21-10, step a). 82 83 At the same time, decarboxylation of phosphatidylserine back to phosphatidylethanolamine (Eq. 21-10, step b) also takes place, the net effect being a catalytic cycle for decarboxylation of serine to ethano-lamine. The latter can react with CTP to initiate synthesis of new phospholipid molecules or can be converted to phosphatidylcholine (step c). However, unless there is an excess of methionine and folate in the diet, choline is an essential human nutrient.184... [Pg.1199]

Lipids also show asymmetrical distributions between the inner and outer leaflets of the bilayer. In the erythrocyte plasma membrane, most of the phosphatidylethanolamine and phosphatidylserine are in the inner leaflet, whereas the phosphatidylcholine and sphingomyelin are located mainly in the outer leaflet. A similar asymmetry is seen even in artificial liposomes prepared from mixtures of phospholipids. In liposomes containing a mixture of phosphatidylethanolamine and phosphatidylcholine, phosphatidylethanolamine localizes preferentially in the inner leaflet, and phosphatidylcholine in the outer. For the most part, the asymmetrical distributions of lipids probably reflect packing forces determined by the different curvatures of the inner and outer surfaces of the bilayer. By contrast, the disposition of membrane proteins reflects the mechanism of protein synthesis and insertion into the membrane. We return to this topic in chapter 29. [Pg.394]

Synthesis of most phospholipids starts from glycerol-3-phosphate, which is formed in one step from the central metabolic pathways, and acyl-CoA, which arises in one step from activation of a fatty acid. In two acylation steps the key compound phosphatidic acid is formed. This can be converted to many other lipid compounds as well as CDP-diacylglycerol, which is a key branchpoint intermediate that can be converted to other lipids. Distinct routes to phosphatidylethanolamine and phosphatidylcholine are found in prokaryotes and eukaryotes. The pathway found in eukaryotes starts with transport across the plasma membrane of ethanolamine and/or choline. The modified derivatives of these compounds are directly condensed with diacylglycerol to form the corresponding membrane lipids. Modification of the head-groups or tail-groups on preformed lipids is a common reaction. For example, the ethanolamine of the head-group in phosphatidylethanolamine can be replaced in one step by serine or modified in 3 steps to choline. [Pg.437]


See other pages where Phosphatidylethanolamine synthesis is mentioned: [Pg.209]    [Pg.78]    [Pg.209]    [Pg.209]    [Pg.78]    [Pg.209]    [Pg.169]    [Pg.920]    [Pg.223]    [Pg.224]    [Pg.206]    [Pg.292]    [Pg.255]    [Pg.201]    [Pg.1040]    [Pg.1398]    [Pg.333]   
See also in sourсe #XX -- [ Pg.7 , Pg.197 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.438 , Pg.440 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.314 ]

See also in sourсe #XX -- [ Pg.735 , Pg.736 , Pg.736 ]

See also in sourсe #XX -- [ Pg.398 , Pg.399 ]

See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Phosphatidylethanolamine

© 2024 chempedia.info