Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase pervaporation

The most convenient mathematical method of describing pervaporation is to divide the overall separation processes into two steps, as shown in Figure 40. The first is evaporation of the feed Hquid to form a (hypothetical) saturated vapor phase on the feed side of the membrane. The second is permeation of this vapor through the membrane to the low pressure permeate side of the membrane. Although no evaporation actually takes place on the feed side of the membrane during pervaporation, this approach is mathematically simple and is thermodynamically completely equivalent to the physical process. The evaporation step from the feed hquid to the saturated vapor phase produces a separation, which can be defined (eq. 13) as the ratio of... [Pg.86]

In this process the addition of water vapor to the sweep stream can be controlled so that the water activity of the gas phase equals that of the beverage. When this occurs, there is no transport of water across the membrane. The water content of both the beverage feed and the sweep stream is kept constant. These conditions must be maintained for optimum alcohol reduction. The pervaporation system controls the feed, membrane, airstream moisture level, and ethanol recovery functions. An operational system has been developed (13). [Pg.87]

Advantages to Membrane Separation This subsertion covers the commercially important membrane applications. AU except electrodialysis are pressure driven. All except pervaporation involve no phase change. All tend to be inherently low-energy consumers in the-oiy if not in practice. They operate by a different mechanism than do other separation methods, so they have a unique profile of strengths and weaknesses. In some cases they provide unusual sharpness of separation, but in most cases they perform a separation at lower cost, provide more valuable products, and do so with fewer undesirable side effects than older separations methods. The membrane interposes a new phase between feed and product. It controls the transfer of mass between feed and product. It is a kinetic, not an equihbrium process. In a separation, a membrane will be selective because it passes some components much more rapidly than others. Many membranes are veiy selective. Membrane separations are often simpler than the alternatives. [Pg.2024]

In the flow schematic (Fig. 22-80), the condenser controls the vapor pressure of the permeating component. The vacuum pump, as shown, pumps both hqiiid and vapor phases from the condenser. Its major duty is the removal of noncondensibles. Early work in pervaporation focused on organic-organic separations. Many have been demonstrated few if any have oeen commerciaHzed. Still, there are prospects for some difficult organic separations. [Pg.2053]

Membrane Pervaporation Since 1987, membrane pei vapora-tion has become widely accepted in the CPI as an effective means of separation and recovery of liquid-phase process streams. It is most commonly used to dehydrate hquid hydrocarbons to yield a high-purity ethanol, isopropanol, and ethylene glycol product. The method basically consists of a selec tively-permeable membrane layer separating a liquid feed stream and a gas phase permeate stream as shown in Fig. 25-19. The permeation rate and selectivity is governed bv the physicochemical composition of the membrane. Pei vaporation differs From reverse osmosis systems in that the permeate rate is not a function of osmotic pressure, since the permeate is maintained at saturation pressure (Ref. 24). [Pg.2194]

Pervaporation. Pervaporation differs from the other membrane processes described so far in that the phase-state on one side of the membrane is different from that on the other side. The term pervaporation is a combination of the words permselective and evaporation. The feed to the membrane module is a mixture (e.g. ethanol-water mixture) at a pressure high enough to maintain it in the liquid phase. The liquid mixture is contacted with a dense membrane. The other side of the membrane is maintained at a pressure at or below the dew point of the permeate, thus maintaining it in the vapor phase. The permeate side is often held under vacuum conditions. Pervaporation is potentially useful when separating mixtures that form azeotropes (e.g. ethanol-water mixture). One of the ways to change the vapor-liquid equilibrium to overcome azeotropic behavior is to place a membrane between the vapor and liquid phases. Temperatures are restricted to below 100°C, and as with other liquid membrane processes, feed pretreatment and membrane cleaning are necessary. [Pg.199]

Use a membrane. If a semipermeable membrane is placed between the vapor and liquid phases, it can alter the vapor-liquid equilibrium and allow the separation to be achieved. This technique is known as pervaporation and was discussed in Chapter 10. [Pg.235]

Membranes can also be used to alter the vapor-liquid equilibrium behavior and allow separation of azeotropes. The liquid mixture is fed to one side of the membrane, and the permeate is held under conditions to maintain it in the vapor phase. Most separations use hydrophyllic membranes that preferentially pass water rather than organic material. Thus, pervaporation is commonly used for the dehydration of organic components. [Pg.257]

MTBE is a well known enhancer of the number of octanes in gasoline and as excellent oxygentated fuel additives that decrease carbon monoxide emissions. Therefore, MTBE has been one of the fastest growing chemicals of the past decade. MTBE is produced by reacting methanol with isobutylene from mixed-C4 stream liquid phase over a strong acid ion-exchange resin as catalyst. An excess of methanol is used in order to improve the reaction conversion. This excess has to be separated from the final product. The pervaporation technique, more energy efficient and with lower cost process, has been proposed as alternative to distillation [74],... [Pg.136]

The composition at the permeate-phase interface depends on the partial pressure and saturation vapour pressure of the component. Solvent composition within the membrane may vary considerably between the feed and permeate sides interface in pervaporation. By lowering the pressure at the permeate side, very low concentrations can be achieved while the solvent concentration on the feed-side can be up to 90 per cent by mass. Thus, in contrast to reverse osmosis, where such differences are not observed in practice, the modelling of material transport in pervaporation must take into account the concentration dependence of the diffusion coefficients. [Pg.470]

T0885 Westinghouse Savannah River Company, In Situ Air Stripping T0894 Xerox Corporation, Two-Phase Extraction System T0896 Yellowstone Environmental Science, Inc. (YES), Biocat II T0900 Zenon Environmental, Inc., Cross-Flow Pervaporation System... [Pg.291]

Fig. 19.3 The solution-diffusion transport model in pervaporation. a Solution of compounds from the feed phase into the membrane surface, b Diffusion across the membrane barrier, c Desorption from the membrane permeate (downstream) side into the permeate phase... Fig. 19.3 The solution-diffusion transport model in pervaporation. a Solution of compounds from the feed phase into the membrane surface, b Diffusion across the membrane barrier, c Desorption from the membrane permeate (downstream) side into the permeate phase...
Fig. 23.4 Organophilic pervaporation (PV) for in situ recovery of volatile flavour compounds from bioreactors. The principle of PV can be viewed as a vacuum distillation across a polymeric barrier (membrane) dividing the liquid feed phase from the gaseous permeate phase. A highly aroma enriched permeate is recovered by freezing the target compounds out of the gas stream. As a typical silicone membrane, an asymmetric poly(octylsiloxane) (POMS) membrane is exemplarily depicted. Here, the selective barrier is a thin POMS layer on a polypropylene (PP)/poly(ether imide) (PEI) support material. Several investigations of PV for the recovery of different microbially produced flavours, e.g. 2-phenylethanol [119], benzaldehyde [264], 6-pentyl-a-pyrone [239], acetone/buta-nol/ethanol [265] and citronellol/geraniol/short-chain esters [266], have been published... Fig. 23.4 Organophilic pervaporation (PV) for in situ recovery of volatile flavour compounds from bioreactors. The principle of PV can be viewed as a vacuum distillation across a polymeric barrier (membrane) dividing the liquid feed phase from the gaseous permeate phase. A highly aroma enriched permeate is recovered by freezing the target compounds out of the gas stream. As a typical silicone membrane, an asymmetric poly(octylsiloxane) (POMS) membrane is exemplarily depicted. Here, the selective barrier is a thin POMS layer on a polypropylene (PP)/poly(ether imide) (PEI) support material. Several investigations of PV for the recovery of different microbially produced flavours, e.g. 2-phenylethanol [119], benzaldehyde [264], 6-pentyl-a-pyrone [239], acetone/buta-nol/ethanol [265] and citronellol/geraniol/short-chain esters [266], have been published...
The composite materials have been used to form selective membranes for the separation of liquid mixtures [181]. The membranes should consist of a polymer which is soluble in the liquid components) to be separated, as the dispersed phase-derived polymer, and a continuous phase-derived polymer which is insoluble in all components of the liquid mixture. Thus, membranes consisting of polystyrene in polyacrylamide will separate toluene from cyclohexane, and those comprising polyacrylamide in crosslinked polystyrene can be used for water removal from ethanol. Due to the very thin films of polymer which separate the polyhedral dispersed phase cells, the permeation rates, which are measured by pervaporation, are relatively high. [Pg.207]

The mechanical properties of these membranes were improved by including a crosslinker, methylene bisacrylamide, in the aqueous phase, and by using a styrene/butyl acrylate (BA) mixture as the continuous phase [185]. The styrene/BA mixture had to be prepolymerised to low conversion to allow HIPE formation. The permeation rate of the membrane was improved by including a porogen (hexane) in the organic phase, generating a permanent porous structure [186]. The pervaporation rate was indeed increased, however a drop in selectivity for water from water/ethanol mixtures was also observed. [Pg.207]

Equation (2.79) expresses the driving force in pervaporation in terms of the vapor pressure. The driving force could equally well have been expressed in terms of concentration differences, as in Equation (2.83). However, in practice, the vapor pressure expression provides much more useful results and clearly shows the connection between pervaporation and gas separation, Equation (2.60). Also, the gas phase coefficient, is much less dependent on temperature than P L. The reliability of Equation (2.79) has been amply demonstrated experimentally [17,18], Figure 2.13, for example, shows data for the pervaporation of water as a function of permeate pressure. As the permeate pressure (p,e) increases, the water flux falls, reaching zero flux when the permeate pressure is equal to the feed-liquid vapor pressure (pIsal) at the temperature of the experiment. The straight lines in Figure 2.13 indicate that the permeability coefficient d f ) of water in silicone rubber is constant, as expected in this and similar systems in which the membrane material is a rubbery polymer and the permeant swells the polymer only moderately. [Pg.42]

The separation factor, /3pervap, contains contributions from the intrinsic permeation properties of the membrane, the composition and temperature of the feed liquid, and the permeate pressure of the membrane. The contributions of these factors are best understood if the pervaporation process is divided into two steps, as shown in Figure 9.3 [18]. The first step is evaporation of the feed liquid to form a saturated vapor in contact with the membrane the second step is diffusion of this vapor through the membrane to the low-pressure permeate side. This two-step description is only a conceptual representation in pervaporation no vapor phase actually contacts the membrane surface. Nonetheless, the representation of the process shown in Figure 9.3 is thermodynamically completely equivalent to the actual pervaporation process shown in Figure 9.F... [Pg.358]

Figure 9.3 illustrates the concept of permeation from a saturated vapor phase in equilibrium with the feed liquid as a tool to obtain Equation (9.5). A number of workers have experimentally compared vapor permeation and pervaporation separations and have sometimes shown that permeation from the... [Pg.359]

The first application of pervaporation was the removal of water from an azeotropic mixture of water and ethanol. By definition, the evaporative separation term /3evap for an azeotropic mixture is 1 because, at the azeotropic concentration, the vapor and the liquid phases have the same composition. Thus, the 200- to 500-fold separation achieved by pervaporation membranes in ethanol dehydration is due entirely to the selectivity of the membrane, which is much more permeable to water than to ethanol. This ability to achieve a large separation where distillation fails is why pervaporation is also being considered for the separation of aromatic/aliphatic mixtures in oil refinery applications. The evaporation separation term in these closely boiling mixtures is again close to 1, but a substantial separation is achieved due to the greater permeability of the membrane to the aromatic components. [Pg.360]

Figure 9.13(b) shows the use of pervaporation to dry a chlorinated solvent, in this case water-saturated ethylene dichloride containing 2000 ppm water. A poly(vinyl alcohol) dehydration membrane can easily produce a residue containing less than 10 ppm water and a permeate containing about 50 wt% water. On condensation the permeate vapor separates into two phases, a very small water... [Pg.376]

L.M. Vane, F.R. Alvarez, A.P. Mairal and R.W. Baker, Separation of Vapor-phase Alcohol/Water Mixtures Via Fractional Condensation Using a Pilot-scale Dephlegma-tor Enhancement of the Pervaporation Process Separation Factor, Ind. Eng. Chem. Res. (in press). [Pg.391]

The analytical extraction systems related to points 1 and 2 are pervaporation-based techniques (such as those mentioned in Sections 4.3.1 and 4.3.2). Extraction based on the membrane separation of an aqueous phase and an organic phase (point 3 above) will be dealt with in Section 4.3.3. As the system concerning point 4 is very rarely used, it will not be considered here. [Pg.76]

Pervaporation is a concentration-driven membrane process for liquid feeds. It is based on selective sorption of feed compounds into the membrane phase, as a result of differences in membrane-solvent compatibility, often referred to as solubility in the membrane matrix. The concentration difference (or, in fact, the difference in chemical potential) is obtained by applying a vacuum at the permeate side, so that transport through the membrane matrix occurs by diffusion in a transition from liquid to vapor conditions (Figure 3.1). Alternatively, a sweep gas can be used to obtain low vapor pressures at the permeate side with the same effect of a chemical potential gradient. [Pg.46]

Several authors have already developed methodologies for the simulation of hybrid distillation-pervaporation processes. Short-cut methods were developed by Moganti et al. [95] and Stephan et al. [96]. Due to simplifications such as the use of constant relative volatility, one-phase sidestreams, perfect mixing on feed and permeate sides of the membrane, and simple membrane transport models, the results obtained should only be considered qualitative in nature. Verhoef et al. [97] used a quantitative approach for simulation, based on simplified calculations in Aspen Plus/Excel VBA. Hommerich and Rautenbach [98] describe the design and optimization of combined pervaporation-distillation processes, incorporating a user-written routine for pervaporation into the Aspen Plus simulation software. This is an improvement over most approaches with respect to accuracy, although the membrane model itself is still quite... [Pg.57]

PV-assisted catalysis in comparison with reactive distillation has many advantages the separation efficiency is not limited by relative volatility as in distillation in pervaporation only a fraction of the feed is forced to permeate through the membrane and undergoes the liquid- to vapor-phase change and, as a consequence, energy consumption is generally lower compared to distillation. [Pg.279]

A membrane is usually seen as a selective barrier that is able to be permeated by some species present into a feed while rejecting the others. This concept is the basis of all traditional membrane operations, such as microfiltration, ultrafiltration, nanofil-tration, reverse osmosis, pervaporation, gas separation. On the contrary, membrane contactors do not allow the achievement of a separation of species thanks to the selectivity of the membrane, and they use microporous membranes only as a mean for keeping in contact two phases. The interface is established at the pore mouths and the transport of species from/to a phase occurs by simple diffusion through the membrane pores. In order to work with a constant interfacial area, it is important to carefully control the operating pressures of the two phases. Usually, the phase that does not penetrate into the pores must be kept at higher pressure than the other phase (Figure 20.1a and b). When the membrane is hydrophobic, polar phases can not go into the pores, whereas, if it is hydrophilic, the nonpolar/gas phase remains blocked at the pores entrance [1, 2]. [Pg.449]


See other pages where Phase pervaporation is mentioned: [Pg.1327]    [Pg.1327]    [Pg.144]    [Pg.777]    [Pg.778]    [Pg.256]    [Pg.123]    [Pg.469]    [Pg.9]    [Pg.144]    [Pg.558]    [Pg.578]    [Pg.370]    [Pg.371]    [Pg.378]    [Pg.19]    [Pg.47]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Pervaporation, phase transfer processe

© 2024 chempedia.info