Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pervaporation continued

Modules Every module design used in other membrane operations has been tried in pervaporation. One unique requirement is for low hydraulic resistance on the permeate side, since permeate pressure is very low (0.1-1 Pa). The rule for near-vacuum operation is the bigger the channel, the better the transport. Another unique need is for heat input. The heat of evaporation comes from the liquid, and intermediate heating is usually necessary. Of course economy is always a factor. Plate-and-frame construction was the first to be used in large installations, and it continues to be quite important. Some smaller plants use spiral-wound modules, and some membranes can be made as capillary bundles. The capillary device with the feed on the inside of the tube has many advantages in principle, such as good vapor-side mass transfer and economical construction, but it is still limited by the availability of membrane in capillary form. [Pg.66]

Another potential application for zeolite/polymer mixed-matrix membranes is the separation of various liquid chemical mixtures via pervaporation. Pervapora-tion is a promising membrane-based technique for the separation of liquid chemical mixtures, especially in azeotropic or close-boihng solutions. Polydime thy 1-siloxane (PDMS), which is a hydrophobic polymer, has been widely used as the continuous polymer matrix for preparing hydrophobic mixed-matrix membranes. To achieve good compatibility and adhesion between the zeolite particles and the PDMS polymer, ZSM-5 was incorporated into the PDMS polymer matrix, the resulting ZS M -5/ P DM S mixed-matrix membranes showed simultaneous enhancement in selectivity and flux for the separation of isopropyl alcohol from water. It was demonstrated that the separation performance of these membranes was affected by the concentration of the isopropyl alcohol in the feed [96]. [Pg.348]

Based on experimental results and a model describing the kinetics of the system, it has been found that the temperature has the strongest influence on the performance of the system as it affects both the kinetics of esterification and of pervaporation. The rate of reaction increases with temperature according to Arrhenius law, whereas an increased temperature accelerates the pervaporation process also. Consequently, the water content decreases much faster at a higher temperature. The second important parameter is the initial molar ratio of the reactants involved. It has to be noted, however, that a deviation in the initial molar ratio from the stoichiometric value requires a rather expensive separation step to recover the unreacted component afterwards. The third factor is the ratio of membrane area to reaction volume, at least in the case of a batch reactor. For continuous opera-... [Pg.534]

Figure 19.3 schematically describes in more detail the transport phenomena occurring during pervaporation. First, solutes partition into the membrane material according to the thermodynamic equilibrium at the liquid-membrane interface (Fig. 19.3a), followed by diffusion across the membrane material owing to the concentration gradient (Fig. 19.3b). A vacuum or carrier gas stream promotes then continuous desorption of the molecules reaching the permeate side of the membrane (Fig. 19.3c), maintaining in this way a concentration gradient across the membrane and hence a continuous transmembrane flux of compounds. Figure 19.3 schematically describes in more detail the transport phenomena occurring during pervaporation. First, solutes partition into the membrane material according to the thermodynamic equilibrium at the liquid-membrane interface (Fig. 19.3a), followed by diffusion across the membrane material owing to the concentration gradient (Fig. 19.3b). A vacuum or carrier gas stream promotes then continuous desorption of the molecules reaching the permeate side of the membrane (Fig. 19.3c), maintaining in this way a concentration gradient across the membrane and hence a continuous transmembrane flux of compounds.
The composite materials have been used to form selective membranes for the separation of liquid mixtures [181]. The membranes should consist of a polymer which is soluble in the liquid components) to be separated, as the dispersed phase-derived polymer, and a continuous phase-derived polymer which is insoluble in all components of the liquid mixture. Thus, membranes consisting of polystyrene in polyacrylamide will separate toluene from cyclohexane, and those comprising polyacrylamide in crosslinked polystyrene can be used for water removal from ethanol. Due to the very thin films of polymer which separate the polyhedral dispersed phase cells, the permeation rates, which are measured by pervaporation, are relatively high. [Pg.207]

The mechanical properties of these membranes were improved by including a crosslinker, methylene bisacrylamide, in the aqueous phase, and by using a styrene/butyl acrylate (BA) mixture as the continuous phase [185]. The styrene/BA mixture had to be prepolymerised to low conversion to allow HIPE formation. The permeation rate of the membrane was improved by including a porogen (hexane) in the organic phase, generating a permanent porous structure [186]. The pervaporation rate was indeed increased, however a drop in selectivity for water from water/ethanol mixtures was also observed. [Pg.207]

Neel and Aptel at Toulouse continue laboratory pervaporation studies... [Pg.357]

Having said this, the bulk of the pervaporation literature continues to report membrane performance in terms of the total flux through the membrane and a separation factor, /3pervap, defined for a two-component fluid as the ratio of the two components on the permeate side of the membrane divided by the ratio of the two components on the feed side of the membrane. The term /3pervap can be written in several ways. [Pg.358]

Y. Zhu, R.G. Minet and T.T. Tsotsis, A Continuous Pervaporation Membrane Reactor for the Study of Esterification Reactions Using a Composite Polymeric/Ceramic Membrane, Chem. Eng. Sci. 51, 4103 (1996). [Pg.391]

In the membrane reactor shown in Figure 13.16(c), the chemical reaction and the separation step use the same membrane. However, in some processes it is desirable to separate reaction and separation into two distinct operations. If the net result of the process is to change the products of the chemical reaction, the process is still classified under the broad heading of membrane reactor. Two examples in which chemical reaction and separation are physically separated are shown in Figure 13.17. Figure 13.17(a) shows the use of a pervaporation membrane to shift the equilibrium of the de-esterification reaction [39,40], A portion of the organic solution in the esterification reactor is continuously circulated past the... [Pg.510]

In the PV-assisted catalysis, pervaporation is usually used to extract continuously one of the formed products in order to improve conversion of the reactants or to increase reaction selectivity. [Pg.279]

To this purpose, in a study on the photocatalytic degradation of 4-chlorophenol, Camera-Roda and Santarelli [89] proposed an integrated system in which photocatalysis is coupled with pervaporation as process intensification for water detoxification. Pervaporation represents a useful separation process in the case of the removal of VOCs and in this study it is used to remove continuously and at higher rate the organic intermediates that are formed in the first steps of the photocatalytic degradation of the weakly permeable 4-CP. [Pg.351]

Besides wastewater treatment, pervaporation systems have also been tested on a development scale for continually removing volatile organic products (e.g., ethanol, volatile acids) from fermentation broths. [Pg.376]

A process referred to as vapor-arbitrated pervaporation addresses these issues by manipulating the transmembrane activity gradients of water and ethanol in a pervaporation system. Using a permeate side sweep stream that contains water vapor at a partial pressure corresponding to the activity of water on the feed side, permeation of water is halted while ethanol continues to diffuse through the membrane into the sweep stream and is removed. In this way, the native permselectivity of the membrane system can be altered in a controlled fashion to extract one or more volatile components from a solution. [Pg.378]

Does the system form an azeotrope If so, is an entrainer used Can one replace the entrainer by a more benign agent Can the azeotrope be broken by other methods such as pervaporation (see paper by Wynn, 2001) or membrane separation and then continue with distillation to get the final purity ... [Pg.224]

STY is high for a fermentative procedure and ranges from 140 g L-1 d 1 for a continuous tank reactor to 1.2 kg IT1 d 1 in a continuous tower reactor with cell recycle. Depending on the ethanol tolerance of the production species, ethanol is produced to a concentration of 12-20%. The ethanol is traditionally recovered from the fermentation broth via an energy-intensive distillation step, but it is sought to replace the latter by pervaporation or reversed osmosis [25]. [Pg.339]

Operational Factors In industrial use, pervaporation is a continuous-flow single-stage process. Multistage cascade devices are unusual. Pervaporation is usually an adjunct separation, occasionally a principal one. It is used either to break an azeotrope or to concentrate a minor component. Large stand-alone uses may develop in areas... [Pg.1812]

Figure 7.3. Experimental set-up for the fully automated continuous determination of phenols. FID — flame ionization deteotor, GC — gas chromatography, IV1 — HPLC injection valve, IV2 — low-pressure Injeotlon valve, M — membrane, PC — personal computer, PL — propagating liquid, PP — peristaltic pump, PU — pervaporation unit, RC — reaction chamber, S — sample, UP — ultrasonic probe, W — waste and WB — water bath. (Reproduoed with permission of Springer-Verlag, Ref. [31].)... Figure 7.3. Experimental set-up for the fully automated continuous determination of phenols. FID — flame ionization deteotor, GC — gas chromatography, IV1 — HPLC injection valve, IV2 — low-pressure Injeotlon valve, M — membrane, PC — personal computer, PL — propagating liquid, PP — peristaltic pump, PU — pervaporation unit, RC — reaction chamber, S — sample, UP — ultrasonic probe, W — waste and WB — water bath. (Reproduoed with permission of Springer-Verlag, Ref. [31].)...
Neel J, Nguyen QT, Clement R, and Le Blanc L. Fractionation of a binary liquid mixture by continuous pervaporation. J. Memb. Sci. 1983 15 43-62. [Pg.133]

Shabtai Y, Chaimonitz S, Freeman A, Katchalski KE, Linder C, Nemas M, Perry M, and Kedem O. Continuous ethanol production by immobilized yeast reactor with membrane pervaporation unit. Biotech. Bioengg. 1991 38 869-876. [Pg.137]

Zhu Y, Minet RG, and Tsotsis TT. A continuous pervaporation membrane reactor for the study of esterification reactions using a composite polymeric/ceramic membrane. Chem Eng Sci 1996 5(17) 4103-4113. [Pg.318]

MHS with pervaporation of water from LM (MHS-PV) is presented in Figure 13.10. Contrary to the simple MHS with an agitated BLM, separated from the feed and strip solutions by flat hydrophobic or hydrophilic or ion-exchange membranes, the MHS-PV system exploits an FLM continuously flowing between the two flat cation-exchange and two pervaporation membranes. To couple the separation and pervaporation processes, the LM is simultaneously pumped through the MHS and... [Pg.388]

The analytical pervaporator can be used in combination with a flow-injection manifold, either in the upper chamber when the pervaporated species must be derivatized for adaptation to the detector and/or in the lower chamber for the pervaporation of analytes from liquid samples or slurries. Alterations of either the auxiliary dynamic manifold or the pervaporator itself are required when the pervaporation step is assisted by focused microwaves, the separation step assists in the continuous monitoring of an evolving system, untreated solid samples are used or pervaporation is integrated with detection. [Pg.132]

When the pervaporation unit is used for the continuous monitoring of a fermentation process with a view to determining analytes in samples containing suspended particles, or in slurries, the module is altered by increasing the diameter of both channels (inlet and outlet) of the donor chamber, which might otherwise be clogged. [Pg.132]

Fig. 4.18. Continuous iscrete approach to implementing analytical pervaporation of solid samples. The dotted line corresponds to a potential derivatization reaction of the pervaporated species and the dashed lines represent the continuous manifold used for automatic insertion of liquid samples. P peristaltic pump, AS acceptor stream, IV injection valve, SV switching valve for changing between continuous and discrete insertion of sample into the pervaporator, R reagent, DS donor-sample stream, S sample, RC reaction coil, PM pervaporation module, M membrane, D detector, W waste. Fig. 4.18. Continuous iscrete approach to implementing analytical pervaporation of solid samples. The dotted line corresponds to a potential derivatization reaction of the pervaporated species and the dashed lines represent the continuous manifold used for automatic insertion of liquid samples. P peristaltic pump, AS acceptor stream, IV injection valve, SV switching valve for changing between continuous and discrete insertion of sample into the pervaporator, R reagent, DS donor-sample stream, S sample, RC reaction coil, PM pervaporation module, M membrane, D detector, W waste.
The qualifiers continuous and discrete as applied to pervaporation refer to different aspects of the process. In fact, analytical pervaporation is a continuous technique because, while the sample is in the separation module, mass transfer between the phases is continuous until equilibrium is reached. Continuous also refers to the way the sample is inserted into the dynamic manifold for transfer to the pervaporator. When the samples to be treated are liquids or slurries, the overall manifold to be used is one such as that of Fig. 4.18 (dashed lines included). The sample can be continuously aspirated and mixed with the reagent(s) if required (continuous sample insertion). Discrete sample insertion is done by injecting a liquid sample, either via an injection valve in the manifold (and followed by transfer to the pervaporator) or by using a syringe furnished with a hypodermic needle [directly into the lower (donor) chamber of the separation module when no dynamic manifold is connected to the lower chamber]. In any case, the sample reaches the lower chamber and the volatile analyte (or its reaction product) evaporates, diffuses across the membrane and is accepted in the upper chamber by a dynamic or static fluid that drives it continuously or intermittently, respectively, to the detector — except when separation and detection are integrated. [Pg.134]


See other pages where Pervaporation continued is mentioned: [Pg.60]    [Pg.2194]    [Pg.777]    [Pg.65]    [Pg.65]    [Pg.435]    [Pg.558]    [Pg.389]    [Pg.47]    [Pg.251]    [Pg.218]    [Pg.373]    [Pg.52]    [Pg.1813]    [Pg.1950]    [Pg.263]    [Pg.128]    [Pg.301]    [Pg.83]    [Pg.128]    [Pg.131]   


SEARCH



Continuous pervaporation process

Pervaporation systems continuous

© 2024 chempedia.info