Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxides aromatic compounds

Bts(perfluoroacyl) peroxides allow also the alkylation of aromatic compounds [7 2, 153] (equations 132 and 133)... [Pg.482]

This last result bears also on the mode of conversion of the adduct to the final substitution product. As written in Eq. (10), a hydrogen atom is eliminated from the adduct, but it is more likely that it is abstracted from the adduct by a second radical. In dilute solutions of the radical-producing species, this second radical may be the adduct itself, as in Eq. (12) but when more concentrated solutions of dibenzoyl peroxide are employed, the hydrogen atom is removed by a benzoyloxy radical, for in the arylation of deuterated aromatic compounds the deuterium lost from the aromatic nucleus appears as deuterated benzoic acid, Eq. (13).The over-all reaction for the phenylation of benzene by dibenzoyl peroxide may therefore be written as in Eq, (14). [Pg.138]

Aromatic compound 71 Reaction product Yield (mole/mole peroxide)... [Pg.156]

Free-radical carboxymethylation of several aromatic compounds has been reported, " the -CHaCOOH radical being produced by the thermal decomposition of benzoyl peroxide in acetic acid. More recently the carboxymethylation of dibenzofuran brought about by the thermal decomposition of chloroacetylpolyglycolic acid (41) has... [Pg.160]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]

The most commonly employed reagent for the hydroxylation of aromatic compounds is that consisting of ferrous ion and hydrogen peroxide. The suggestion that hydroxyl radicals are intermediates in this reaction was first made by Haber and Weiss, who proposed the following radical-chain mechanism for the process ... [Pg.164]

This reaction is most often carried out with R = aryl, so the net result is the same as in 14-17, though the reagent is different. It is used less often than 14-17, but the scope is similar. When R = alkyl, the scope is more limited. Only certain aromatic compounds, particularly benzene rings with two or more nitro groups, and fused ring systems, can be alkylated by this procedure. 1,4-Quinones can be alkylated with diacyl peroxides or with lead tetraacetate (methylation occurs with this reagent). [Pg.932]

With aromatic compounds that have benzylic sites, the peroxidation is easy. An apparatus in which tetrahydronaphthalene was distilled detonated. It was assumed that this accident was linked to the concentration of peroxide formed in contact with oxygen. When using phenols as inhibitors of oxidation (and polymerisation too) for all these compounds, this avoids these riste. [Pg.242]

Nitrosyl perchlorate Organic materials Perchloric acid Alcohols Permanganic acid Organic materials Peroxodisulfuric acid Organic liquids Potassium dioxide Ethanol Potassium perchlorate Ethanol Potassium permanganate Ethanol, etc. Ruthenium(VIII) oxide Organic materials Silver perchlorate Aromatic compounds Sodium peroxide Hydroxy compounds Uranium hexafluoride Aromatic hydrocarbons, etc. Uranyl perchlorate Ethanol See v-halomides Alcohols... [Pg.343]

Hydrogen peroxide Organic compounds (reference 2) Nitric acid Aromatic amines Nitrosyl perchlorate Organic materials Ozone Aromatic compounds Perchloric acid Aniline, etc. [Pg.779]

The study of the catalytic wet peroxide oxidation of p-coumaric acid over (Al-Fe)PILC has shown a complete removal of aromatic compounds and high TOC reduction (ca.50%) in 4 hours of reaction, leading at the end to total mineralization products (C02 and H20) and traces of oxalic acid. [Pg.312]

Various hydroxyl and amino derivatives of aromatic compounds are oxidized by peroxidases in the presence of hydrogen peroxide, yielding neutral or cation free radicals. Thus the phenacetin metabolites p-phenetidine (4-ethoxyaniline) and acetaminophen (TV-acetyl-p-aminophenol) were oxidized by LPO or HRP into the 4-ethoxyaniline cation radical and neutral V-acetyl-4-aminophenoxyl radical, respectively [198,199]. In both cases free radicals were detected by using fast-flow ESR spectroscopy. Catechols, Dopa methyl ester (dihydrox-yphenylalanine methyl ester), and 6-hydroxy-Dopa (trihydroxyphenylalanine) were oxidized by LPO mainly to o-semiquinone free radicals [200]. Another catechol derivative adrenaline (epinephrine) was oxidized into adrenochrome in the reaction catalyzed by HRP [201], This reaction can proceed in the absence of hydrogen peroxide and accompanied by oxygen consumption. It was proposed that the oxidation of adrenaline was mediated by superoxide. HRP and LPO catalyzed the oxidation of Trolox C (an analog of a-tocopherol) into phenoxyl radical [202]. The formation of phenoxyl radicals was monitored by ESR spectroscopy, and the rate constants for the reaction of Compounds II with Trolox C were determined (Table 22.1). [Pg.736]

One of numerous examples of LOX-catalyzed cooxidation reactions is the oxidation and demethylation of amino derivatives of aromatic compounds. Oxidation of such compounds as 4-aminobiphenyl, a component of tobacco smoke, phenothiazine tranquillizers, and others is supposed to be the origin of their damaging effects including reproductive toxicity. Thus, LOX-catalyzed cooxidation of phenothiazine derivatives with hydrogen peroxide resulted in the formation of cation radicals [40]. Soybean LOX and human term placenta LOX catalyzed the free radical-mediated cooxidation of 4-aminobiphenyl to toxic intermediates [41]. It has been suggested that demethylation of aminopyrine by soybean LOX is mediated by the cation radicals and neutral radicals [42]. Similarly, soybean and human term placenta LOXs catalyzed N-demethylation of phenothiazines [43] and derivatives of A,A-dimethylaniline [44] and the formation of glutathione conjugate from ethacrynic acid and p-aminophenol [45,46],... [Pg.810]

The oxidation of dihydroxy aromatic compounds under the conditions used by Goldschmidt ususually leads to the formation of quinones rather than diradicals. For example, >,/> -dihydroxydiphenyl gives >-diphenoquinone. Several attempts have been made to oxidize o.o -dihydroxydiphenyl, but without success. The product would be of special interest because of the possible equilibrium among diradical, quinone, and peroxide isomers ... [Pg.54]

The carcinogenicity of polycyclic aromatic compound-rich tyre extender oils has lead to the proposal of a legislative ban on their use in Europe. The suitability of naphthenic oils as non-toxic plasticisers in tyre treads is discussed and results are presented of experimental studies of the use of these plasticisers in SBR, EPDM, sulphur-cured EPDM and peroxide-cured EPDM. Despite their low aromatic content, the naphthenic plasticisers are shown to give good results in SBR, probably as a result of the contribution to solvent characteristics of the naphthenic molecular structure. The use of naphthenic oils is expected to increase worldwide as they are said to be one of the best alternatives to aromatic extracts with regard to solvent properties, compatibility, performance and availability. [Pg.32]

Figure 2. Schematic representation of electron transfer from an aromatic compound to O2 with a Cu-exchanged clay as the catalyst and the formation of polymers (Reaction A) and hydrogen peroxide (Reaction B). Figure 2. Schematic representation of electron transfer from an aromatic compound to O2 with a Cu-exchanged clay as the catalyst and the formation of polymers (Reaction A) and hydrogen peroxide (Reaction B).
Guittonneaus, S, De Laat J, Dore M, et al. 1988. Comparative study of the photodegradation of aromatic compounds in water by UV and hydrogen peroxide-UV. Environ Technol Lett 9 1115-1128. [Pg.119]

Besides a variety of other methods, phenols can be prepared by metal-catalyzed oxidation of aromatic compounds with hydrogen peroxide. Often, however, the selectivity of this reaction is rather poor since phenol is more reactive toward oxidation than benzene itself, and substantial overoxidation occurs. In 1990/91 Kumar and coworkers reported on the hydroxylation of some aromatic compounds using titanium silicate TS-2 as catalyst and hydrogen peroxide as oxygen donor (equation 72) . Conversions ranged from 54% to 81% with substituted aromatic compounds being mainly transformed into the ortho-and para-products. With benzene as substrate, phenol as the monohydroxylated product... [Pg.527]

Synthetic operations involving ozonolysis lead to formation of aldehydes, ketones or carboxylic acids, as shown in Scheme 16, or to various peroxide compounds, as depicted in Scheme 7 (Section V.B.5), depending on the nature of the R to R substituents and the prevalent conditions of reaction no effort is usually made to isolate either type of ozonide, but only the final products. This notwithstanding, intermediates 276 and 278 are prone to qualitative, quantitative and structural analysis. The appearance of a red-brown discoloration during ozonization of an olefin below — 180°C was postulated as due to formation of an olefin-ozone complex, in analogy to the jr-complexes formed with aromatic compounds however, this contention was contested (see also Section V1I.C.2). [Pg.717]

Solid styrene was exposed at — 196°C to ozone, in an attempt to discern whether the behavior of the system is similar to that of olefinic compounds, yielding an ozonide, or to that of aromatic compounds, yielding a 7r-complex. On heating to about — 100°C, an adduct is formed that is stable until about —55 °C, when benzaldehyde and a peroxidic polymer are slowly obtained. The structure of the adduct is probably that of a POZ, based on the similarity of the IR spectrum with the ozone adduct of vinyl chloride described in the preceding paragraph . [Pg.720]


See other pages where Peroxides aromatic compounds is mentioned: [Pg.504]    [Pg.110]    [Pg.459]    [Pg.134]    [Pg.161]    [Pg.164]    [Pg.1301]    [Pg.193]    [Pg.932]    [Pg.82]    [Pg.80]    [Pg.1480]    [Pg.448]    [Pg.211]    [Pg.54]    [Pg.50]    [Pg.195]    [Pg.42]    [Pg.253]    [Pg.269]    [Pg.269]    [Pg.529]    [Pg.576]   
See also in sourсe #XX -- [ Pg.964 ]




SEARCH



Aromatic compounds from peroxides

Hydrogen peroxide aromatic compounds

Peroxide compounds

Peroxides acyl, reaction with aromatic compounds

© 2024 chempedia.info