Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeability class drug

Fig. 15.5. The biopharmaceutics classification system (BCS). Drug-like molecules are grouped into four BCS classes based on their solubility and permeability. A drug is regarded as a highly soluble compound if the maximum dose given orally is soluble in 250 mL fluid in the... Fig. 15.5. The biopharmaceutics classification system (BCS). Drug-like molecules are grouped into four BCS classes based on their solubility and permeability. A drug is regarded as a highly soluble compound if the maximum dose given orally is soluble in 250 mL fluid in the...
Unlike the straightforward methods for solubility, dissolution, and gastric stability, the BCS guidance recommends several methods to determine the permeability class membership of a drug substance (Table 28.1). [Pg.669]

Faustino PJ, Volpe DA, Knapton AD, Ellison CD, Hussain AS (1999) Value of an internal standard approach for determining internal permeability class membership of drugs. AAPS PharmSci 1(4) abstract. [Pg.679]

The permeability class boundary is based indirectly on the extent of absorption (fraction of dose absorbed, not systemic BA) of a drug substance in humans and directly on measurements of the rate of mass transfer across human intestinal membrane. Alternatively, nonhuman systems capable of predicting the extent of drug absorption in humans can be used (e.g., in vitro epithelial cell culture methods). In the absence of evidence suggesting instability in the gastrointestinal tract, a drug substance is considered to be highly permeable when the extent of absorption in humans is determined to be 90% or more of an administered dose based on a mass balance determination or in comparison to an intravenous reference dose. [Pg.553]

The permeability class of a drug substance can be determined in human subjects using mass balance, absolute BA, or intestinal perfusion approaches. Recommended methods not involving human subjects include in vivo or in situ intestinal perfusion in a suitable animal model (e.g., rats), and/or in vitro permeability methods using excised intestinal tissues, or monolayers of suitable epithelial cells. In many cases, a single method may be sufficient (e.g., when the absolute BA is 90%... [Pg.554]

Systemic bioavailability is the product of fraction of dose absorbed (/a), fraction of dose escaping gut metabolism (/g), and fraction of dose escaping first-pass metabolism (F ). Permeability class is based upon /a, which may be estimated either in vivo or in vitro by direct measurement of mass transfer across human intestinal epithelium. In vivo methods include (i) mass balance studies using unlabeled, stable-isotope labeled, or a radiolabeled drug substance (ii) oral bioavailability using a reference intravenous dose or (iii) intestinal perfusion studies either in humans or an acceptable animal model. Suitable in vitro methods involve the use of either excised human/animal intestinal tissues or cultured epithelial monolayers. All of these methods are deemed appropriate for drugs whose absorption is controlled by passive mechanisms. [Pg.167]

However, drug substances for which /a may be affected by active transport processes [e.g., the efflux transporter P-glycoprotein (P-gp)] may require further model characterization to prevent misclassification of their permeability class. For example, functional expression of efflux transporters must be determined in cultured human or animal epithelial monolayers. At this time, the FDA recommends limiting the use of non-human permeability test methods to drug substances whose absorption is controlled by passive mechanisms. When applying the BCS, an apparent passive mechanism may be inferred when one of the following conditions is satisfied (i) a linear pharmacokinetic relationship between dose and a measure of bioavailability (e.g., area under the plasma concentration-time curve, AUC) is demonstrated in humans ... [Pg.167]

Studies of the extent of absorption in humans, or intestinal permeability methods, can be used to determine the permeability class membership of a drug. To be classified as highly permeable, a test drug should have an extent of absorption >90% in humans. Supportive information on permeability characteristics of the drug substance should also be derived from its physical-chemical properties (e.g., octanol water partition coefficient). [Pg.225]

Drugs in Class II have low aqueous solubility (but high membrane permeability), and any factor affecting dissolution rate would be expected to have an impact on the absorption of such compounds. Factors that are noted in Fig. 11, such as fluid pH, volume and viscosity, and bile secretion (especially in response to fatty foods), might be expected to play a role in dissolution rate and thereby affect absorption. Compounds that fall into this class include carbamazepine, cyclosporin, digoxin, griseofulvin, and spironolactone. Food would be expected to exert a potentially significant affect on... [Pg.55]

Drugs in Class III have good aqueous solubility but poor membrane permeability (e.g., bidisomide, bispho-sphonates, captopril, and furosemide). Food and food components would only be expected to influence absorption of drugs in this class if they affected some aspect... [Pg.55]

Class IV drugs have low aqueous solubility and poor membrane permeability and as such are often considered as poor drug candidates for oral administration. Other routes of administration may need to be considered. For example, neomycin falls into this category, and its oral use is to achieve sterilization of the gut. There is too little information about these compounds and the effect of food to offer general observations. [Pg.56]

Bioavailability depends not only on having the drug in solution, but also on the drug s permeability. A jejunal permeability of at least 2-4 x 10 4cm/s, measured in human subjects by intubation, is considered high [97]. For many drugs and other substances, this permeability corresponds to a fraction absorbed of 90% or better. Amidon et al. [97] thus proposed a Biopharmaceutics Classification System (BCS) for drugs based on the above definitions of these two parameters. Table 3 defines the BCS and includes some drugs representative of each class. [Pg.363]

One example of the application of response surface analysis is a study of critical formulation variables for 20 mg piroxicam capsules [100]. Piroxicam is a BCS Class II drug (low solubility and high permeability). This... [Pg.371]


See other pages where Permeability class drug is mentioned: [Pg.147]    [Pg.363]    [Pg.20]    [Pg.21]    [Pg.432]    [Pg.665]    [Pg.666]    [Pg.667]    [Pg.674]    [Pg.674]    [Pg.85]    [Pg.182]    [Pg.554]    [Pg.555]    [Pg.557]    [Pg.564]    [Pg.963]    [Pg.168]    [Pg.1079]    [Pg.413]    [Pg.338]    [Pg.674]    [Pg.182]    [Pg.1031]    [Pg.1032]    [Pg.633]    [Pg.50]    [Pg.1045]    [Pg.14]    [Pg.444]    [Pg.945]    [Pg.56]    [Pg.364]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Class II drugs: low solubility high permeability

Drug permeability

Permeability Class 1 drugs: high solubility

© 2024 chempedia.info