Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition mobile phase

Chromatographic separations are accomplished by continuously passing one sample-free phase, called a mobile phase, over a second sample-free phase that remains fixed, or stationary. The sample is injected, or placed, into the mobile phase. As it moves with the mobile phase, the sample s components partition themselves between the mobile and stationary phases. Those components whose distribution ratio favors the stationary phase require a longer time to pass through the system. Given sufficient time, and sufficient stationary and mobile phase, solutes with similar distribution ratios can be separated. [Pg.546]

In their original theoretical model of chromatography, Martin and Synge treated the chromatographic column as though it consists of discrete sections at which partitioning of the solute between the stationary and mobile phases occurs. They called each section a theoretical plate and defined column efficiency in terms of the number of theoretical plates, N, or the height of a theoretical plate, H where... [Pg.553]

Thus far all the separations we have considered involve a mobile phase and a stationary phase. Separation of a complex mixture of analytes occurs because each analyte has a different ability to partition between the two phases. An analyte whose distribution ratio favors the stationary phase is retained on the column for a longer time, thereby eluting with a longer retention time. Although the methods described in the preceding sections involve different types of stationary and mobile phases, all are forms of chromatography. [Pg.597]

Capillary Electrochromatography Another approach to separating neutral species is capillary electrochromatography (CEC). In this technique the capillary tubing is packed with 1.5-3-pm silica particles coated with a bonded, nonpolar stationary phase. Neutral species separate based on their ability to partition between the stationary phase and the buffer solution (which, due to electroosmotic flow, is the mobile phase). Separations are similar to the analogous HPLC separation, but without the need for high-pressure pumps, furthermore, efficiency in CEC is better than in HPLC, with shorter analysis times. [Pg.607]

Liquid chromatography is complementary to gas chromatography because samples that cannot be easily handled in the gas phase, such as nonvolatile compounds or thermally unstable ones, eg, many natural products, pharmaceuticals, and biomacromolecules, are separable by partitioning between a Hquid mobile phase and a stationary phase, often at ambient temperature. Developments in the technology of Ic have led to many separations, done by gc in the past, to be carried out by Hquid chromatography. [Pg.109]

By modeling the substance behavior at the interface of two liquid phases, in particular, stationary and mobile phases in liquid chromatography, 1-octanol - water partition coefficients or partition coefficients in... [Pg.392]

In contrast to vapour phase chromatography, the mobile phase in liquid chromatography is a liquid. In general, there are four main types of liquid chromatography adsorption, partition, ion-chromatography, and gel filtration. [Pg.18]

There is no other facet where thin-layer chromatography reveals its paper-chromatographic ancestry more clearly than in the question of development chambers (Fig. 56). Scaled-down paper-chromatographic chambers are still used for development to this day. From the beginning these possessed a vapor space, to allow an equilibration of the whole system for partition-chromatographic separations. The organic mobile phase was placed in the upper trough after the internal space of the chamber and, hence, the paper had been saturated, via the vapor phase, with the hydrophilic lower phase on the base of the chamber. [Pg.124]

Other specifications of the porous materials that affect the performance of HOPC include pore volume. A larger pore volume, or equivalently closer packing, of the porous materials increases the ratio of the volume of the stationary phase to the volume of the mobile phase. The difference causes a shift in the segregation boundary in the partitioning and a change in the resolution. [Pg.626]

The great leap forward for chromatography was the seminal work of Martin and Synge (7) who in 1941 replaced countercurrent liquid-liquid extraction by partition chromatography for the analysis of amino acids from wool. Martin also realized that the mobile phase could be a gas rather than a liquid, and with James first developed (8) gas chromatography (GC) in 1951, following the gas-phase adsorption-chromatographic separations of Phillips (9). [Pg.3]

However, in LC solutes are partitioned according to a more complicated balance among various attractive forces solutes interact with both mobile-phase molecules and stationary-phase molecules (or stationary-phase pendant groups), the stationary-phase interacts with mobile-phase molecules, parts of the stationary phase may interact with each other, and mobile-phase molecules interact with each other. Cavity formation in the mobile phase, overcoming the attractive forces of the mobile-phase molecules for each other, is an important consideration in LC but not in GC. Therefore, even though LC and GC share a considerable amount of basic theory, the mechanisms are very different on a molecular level. This translates into conditions that are very different on a practical level so different, in fact, that separate instruments are required in modern practice. [Pg.151]

Other modes of LC operation include liquid-liquid partition chromatography (LLC) and bonded phase chromatography. In the former, a stationary liquid phase which is immiscible with the mobile phase is coated on a porous support, with separation based on partition equilibrium differences of components between the two liquid phases. This mode offers an alternative to ion exchange in the fractionation of polar, water soluble substances. While quite useful, the danger exists in LLC that the stationary phase can be stripped from the column, if proper precautions are not taken. Hence, it is typical to pre-equil-ibrate carefully the mobile and stationary phases and to use a forecolimn, heavily loaded with stationary phase 9). [Pg.227]

Figure 7. Separation of eight biogenic amines using ion pair partition liquid chromatography. Conditions 30 cm column with 4 fim silica stationary phase, 0.1M HClO /0.9M NaClO mobile phase, ethylacetate/tributyl phosphate/hexane (72.5/10/17.5) velocity, 0.8 cm/sec (47). Figure 7. Separation of eight biogenic amines using ion pair partition liquid chromatography. Conditions 30 cm column with 4 fim silica stationary phase, 0.1M HClO /0.9M NaClO mobile phase, ethylacetate/tributyl phosphate/hexane (72.5/10/17.5) velocity, 0.8 cm/sec (47).
HSCCC is attracting attention based on its high separation scale, 100% recovery of sample, and mild operating conditions. It is a chromatographic separation process based on the partition coefficients of different analytes in two immiscible solvent systems (mobile phase and stationary phase) subjected to a centrifugal acceleration field. [Pg.488]


See other pages where Partition mobile phase is mentioned: [Pg.572]    [Pg.215]    [Pg.546]    [Pg.547]    [Pg.550]    [Pg.564]    [Pg.578]    [Pg.582]    [Pg.610]    [Pg.610]    [Pg.779]    [Pg.248]    [Pg.642]    [Pg.104]    [Pg.108]    [Pg.109]    [Pg.109]    [Pg.1530]    [Pg.1532]    [Pg.17]    [Pg.309]    [Pg.258]    [Pg.332]    [Pg.615]    [Pg.616]    [Pg.572]    [Pg.151]    [Pg.411]    [Pg.10]    [Pg.13]    [Pg.217]    [Pg.218]    [Pg.59]    [Pg.215]    [Pg.22]    [Pg.309]   
See also in sourсe #XX -- [ Pg.647 ]




SEARCH



Phase partitioning

© 2024 chempedia.info