Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition coefficients observed

For ammonium surfactants there is evidence for the existence of an additional specific interaction between the headgroups of the surfactant and the aromatic solubilisate . This is in line with the observation that partition coefficients for benzene in CTAB solutions are much higher than those for... [Pg.129]

The kinetic data are essentially always treated using the pseudophase model, regarding the micellar solution as consisting of two separate phases. The simplest case of micellar catalysis applies to unimolecTilar reactions where the catalytic effect depends on the efficiency of bindirg of the reactant to the micelle (quantified by the partition coefficient, P) and the rate constant of the reaction in the micellar pseudophase (k ) and in the aqueous phase (k ). Menger and Portnoy have developed a model, treating micelles as enzyme-like particles, that allows the evaluation of all three parameters from the dependence of the observed rate constant on the concentration of surfactant". ... [Pg.129]

Herein [5.2]i is the total number of moles of 5.2 present in the reaction mixture, divided by the total reaction volume V is the observed pseudo-first-order rate constant Vmrji,s is an estimate of the molar volume of micellised surfactant S 1 and k , are the second-order rate constants in the aqueous phase and in the micellar pseudophase, respectively (see Figure 5.2) V is the volume of the aqueous phase and Psj is the partition coefficient of 5.2 over the micellar pseudophase and water, expressed as a ratio of concentrations. From the dependence of [5.2]j/lq,fe on the concentration of surfactant, Pj... [Pg.135]

Efforts have been made to correlate electronic stmcture and biological activity in the tetracycline series (60,61). In both cases, the predicted activities are of the same order as observed in vitro with some exceptions. The most serious drawback to these calculations is the lack of carryover to in vivo antibacterial activity. Attempts have also been made (62) to correlate partition coefficients and antibacterial activity. The stereochemical requirements are somewhat better defined. Thus 4-epitetracycline and 5a-epitetracycline [65517-29-5] C22H24N20g, are inactive (63). The 6-epi compound [19369-52-9] is about one-half as active as the 6a (or natural) configuration. [Pg.180]

An overview of some basic mathematical techniques for data correlation is to be found herein together with background on several types of physical property correlating techniques and a road map for the use of selected methods. Methods are presented for the correlation of observed experimental data to physical properties such as critical properties, normal boiling point, molar volume, vapor pressure, heats of vaporization and fusion, heat capacity, surface tension, viscosity, thermal conductivity, acentric factor, flammability limits, enthalpy of formation, Gibbs energy, entropy, activity coefficients, Henry s constant, octanol—water partition coefficients, diffusion coefficients, virial coefficients, chemical reactivity, and toxicological parameters. [Pg.232]

A sampling of appHcations of Kamlet-Taft LSERs include the following. (/) The Solvatochromic Parameters for Activity Coefficient Estimation (SPACE) method for infinite dilution activity coefficients where improved predictions over UNIEAC for a database of 1879 critically evaluated experimental data points has been claimed (263). (2) Observation of inverse linear relationship between log 1-octanol—water partition coefficient and Hquid... [Pg.254]

General anaesthetics have been in use for the last 100 years, yet their mechanism of action are still not yet clearly defined. For many years it was thought that general anaesthetics exerted their effects by dissolving in cell membranes and perturbing the lipid environment in a non-specific manner. This theory derived from the observation that for a number of drugs which induced anaesthesia, their potency correlated with their oil-water partition coefficients. This Meyer-Oveiton correlation was accepted for a number of years, however in the last 15-20 years evidence has shown that a more likely theory is that of specific interactions of anaesthetics with proteins, particularly those within the CNS that mediate neurotransmission [1]. [Pg.533]

The important yet unexpected result is that in NR-s-SBR (solution) blends, carbon black preferably locates in the interphase, especially when the rubber-filler interaction is similar for both polymers. In this case, the carbon black volume fraction is 0.6 for the interphase, 0.24 for s-SBR phase, and only 0.09 in the NR phase. The higher amount in SBR phase could be due to the presence of aromatic structure both in the black and the rubber. Further, carbon black is less compatible with NR-cE-1,4 BR blend than NR-s-SBR blend because of the crystallization tendency of the former blend. There is a preferential partition of carbon black in favor of cis-1,4 BR, a significant lower partition coefficient compared to NR-s-SBR. Further, it was observed that the partition coefficient decreases with increased filler loading. In the EPDM-BR blend, the partition coefficient is as large as 3 in favor of BR. [Pg.319]

In 1868 two Scottish scientists, Crum Brown and Fraser [4] recognized that a relation exists between the physiological action of a substance and its chemical composition and constitution. That recognition was in effect the birth of the science that has come to be known as quantitative structure-activity relationship (QSAR) studies a QSAR is a mathematical equation that relates a biological or other property to structural and/or physicochemical properties of a series of (usually) related compounds. Shortly afterwards, Richardson [5] showed that the narcotic effect of primary aliphatic alcohols varied with their molecular weight, and in 1893 Richet [6] observed that the toxicities of a variety of simple polar chemicals such as alcohols, ethers, and ketones were inversely correlated with their aqueous solubilities. Probably the best known of the very early work in the field was that of Overton [7] and Meyer [8], who found that the narcotic effect of simple chemicals increased with their oil-water partition coefficient and postulated that this reflected the partitioning of a chemical between the aqueous exobiophase and a lipophilic receptor. This, as it turned out, was most prescient, for about 70% of published QSARs contain a term relating to partition coefficient [9]. [Pg.470]

The importance of lipophilicity to bitterness has been well established, both directly and indirectly. The importance of partitioning effects in bitterness perception has been stressed by Rubin and coworkers, and Gardner demonstrated that the threshold concentration of bitter amino acids and peptides correlates very well with molecular connectivity (which is generally regarded as a steric parameter, but is correlated with the octanol-water partition coefficient ). Studies on the surface pressure in monolayers of lipids from bovine, circumvallate papillae also indicated that there is a very good correlation between the concentration of a bitter compound that is necessary in order to give an increase in the surface pressure with the taste threshold in humans. These results and the observations of others suggested that the ability of bitter compounds to penetrate cell membranes is an important factor in bitterness perception. [Pg.318]

Figure 24. Lattice strain model applied to zircon-melt partition coefficients from Hinton et al. (written comm.) for a zircon phenocryst in peralkaline rhyolite SMN59 from Kenya. Ionic radii are for Vlll-fold coordination (Shannon 1976). The curves are fits to Equation (1) at an estimated eraption temperature of 700°C (Scaillet and Macdonald 2001). Note the excellent fit of the trivalent lanAanides, with the exception of Ce, whose elevated partition coefficient is due to the presence of both Ce and Ce" in the melt, with the latter having a much higher partition coefficient into zircon. The 4+ parabola cradely fits the data from Dj, and Dy, through Dzi to Dih, but does not reproduce the observed DuIDjh ratio. We speculate that this is due to melt compositional effects on Dzt and (Linnen and Keppler 2002), and possibly other 4+ cations, in very silicic melts. Because of its Vlll-fold ionic radius of 0.91 A (vertical line), Dpa is likely to be at least as high as Dwh, and probably considerably higher. Figure 24. Lattice strain model applied to zircon-melt partition coefficients from Hinton et al. (written comm.) for a zircon phenocryst in peralkaline rhyolite SMN59 from Kenya. Ionic radii are for Vlll-fold coordination (Shannon 1976). The curves are fits to Equation (1) at an estimated eraption temperature of 700°C (Scaillet and Macdonald 2001). Note the excellent fit of the trivalent lanAanides, with the exception of Ce, whose elevated partition coefficient is due to the presence of both Ce and Ce" in the melt, with the latter having a much higher partition coefficient into zircon. The 4+ parabola cradely fits the data from Dj, and Dy, through Dzi to Dih, but does not reproduce the observed DuIDjh ratio. We speculate that this is due to melt compositional effects on Dzt and (Linnen and Keppler 2002), and possibly other 4+ cations, in very silicic melts. Because of its Vlll-fold ionic radius of 0.91 A (vertical line), Dpa is likely to be at least as high as Dwh, and probably considerably higher.
Over the past 10 years a great deal of effort has gone into constraining the values of the partition coefficients for U and Th between mantle minerals and basalt. Chapter 3 (Elundy and Wood 2003) reviews this work in more detail however, a basic review relevant to observations in MORE and modeling is given here. [Pg.191]

Both dynamic melting and equilibrium transport melting require that the porosity when two nuclides are fractionated from one another is similar to the size of the larger of the partition coefficients for the two nuclides. Given the low values of the experimental determinations of Du and Dxh, the porosities required to explain the observational data in these models are generally less than 0.5% and often times closer to 0.1%. Such low porosity estimates have been criticized based on physical grounds given the low estimated mantle permeability derived from the extent of melt connection observed in experiments (Paul 2001). [Pg.198]

In summary, a key aspect to the utility of U-series isotopes in the study of arc lavas is that whereas Th and Pa are observed and predicted to behave as relatively immobile high field strength elements (HFSE), Ra and (under oxidizing conditions) U behave like large ion lithophile elements (LILE) and are significantly mobilized in aqueous fluids. Fluid-wedge interaction will only serve to increase these fractionations. Just how robust the experimental partition coefficients are remains to be established by future experiments. [Pg.269]

In conclusion, the inclined U-Pa and U-Th arrays appear to have some time significance because their interpretation as simply the result of recent mixing with a fluid containing Th and Pa as well as U requires fluid partition coefficients for Th and Pa well in excess of those observed experimentally. The corollary is that that there must be a decoupling between Ra-Th and Th-U disequilibria. A further possibility is a combination of the two end-member models discussed above into one in which some Th and Pa addition by fluids is followed by some in-growth due to ageing. In this case (discussed further below) the age inferred from the U-Th and U-Pa arrays is necessarily less straight forward to interpret. [Pg.280]


See other pages where Partition coefficients observed is mentioned: [Pg.322]    [Pg.322]    [Pg.272]    [Pg.407]    [Pg.409]    [Pg.151]    [Pg.458]    [Pg.322]    [Pg.68]    [Pg.379]    [Pg.518]    [Pg.225]    [Pg.32]    [Pg.41]    [Pg.291]    [Pg.896]    [Pg.739]    [Pg.819]    [Pg.60]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.81]    [Pg.84]    [Pg.89]    [Pg.98]    [Pg.110]    [Pg.113]    [Pg.160]    [Pg.188]    [Pg.192]    [Pg.192]    [Pg.226]    [Pg.242]    [Pg.268]    [Pg.283]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



© 2024 chempedia.info