Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particulates, retention

FIGURE 3-8. Combination flame-arresting and particulate retention vent system (Q-Rohr System). (Source Cv Technology, Inc.)... [Pg.29]

Clarification refers to the removal of particulate matter from protein solutions. In addition to efficient removal of particulate matter, high-protein transmission through the membrane is desirable. Microfiltration membranes are more widely used for clarification. However, in applications such as vims removal from biopharmaceutical solutions ultrafiltration is increasingly preferred on account of the higher efficiency and reliability of particulate retention. Some of the common applications of clarification are listed below [2] ... [Pg.509]

Use of ultrafiltration (UF) membranes is becoming increasingly popular for clarification of apple juice. AH particulate matter and cloud is removed, but enzymes pass through the membrane as part of the clarified juice. Thus pasteurization before UF treatment to inactivate enzymes prevents haze formation from enzymatic activity. Retention of flavor volatiles is lower than that using a rack-and-frame press, but higher than that using rotary vacuum precoat-filtration (21). [Pg.573]

The use of hot gas clean-up methods to remove the sulfur and particulates from the gasified fuel increases turbine performance by a few percentage points over the cold clean-up systems. Hot gas clean-up permits use of the sensible heat and enables retention of the carbon dioxide and water vapor in the... [Pg.70]

Small batch retorts, heated electrically or hy combustion, are widely used as carburizing furnaces and are applicable also to chemic processes involving the heat treating of particulate sohds. These are mounted on a structural-steel base, complete with cyhnder, furnace, drive motor, burner, etc. Units are commercially av able in diameters from 0.24 to 1.25 m and lengths of 1 to 2 m. Continuous retorts with helical internal spirals are employed for metal-heat-treating purposes. Precise retention control is maintained in these operations. Standard diameters are 0.33, 0.5, and 0.67 m with effec tive lengths up... [Pg.1211]

Equations (22-86) and (22-89) are the turbulent- and laminar-flow flux equations for the pressure-independent portion of the ultrafiltra-tion operating curve. They assume complete retention of solute. Appropriate values of diffusivity and kinematic viscosity are rarely known, so an a priori solution of the equations isn t usually possible. Interpolation, extrapolation, even precuction of an operating cui ve may be done from limited data. For turbulent flow over an unfouled membrane of a solution containing no particulates, the exponent on Q is usually 0.8. Fouhng reduces the exponent and particulates can increase the exponent to a value as high as 2. These equations also apply to some cases of reverse osmosis and microfiltration. In the former, the constancy of may not be assumed, and in the latter, D is usually enhanced very significantly by the action of materials not in true solution. [Pg.2040]

In AFBC units, heat is removed from the flue gas by a convection-pass tube bank. The particulates leaving the boiler with the flue gas consist of unreacted and spent sorbent, unburned carbon, and ash. Multiclones after the convection pass remove much of the particulate matter and recvcle it to the combustor, increasing the in-furnace residence time an improving combustion efficiency and sulfur retention performance. Bubbling PFBC units do not have convection-pass tube banks and do not recycle solids to the boiler. [Pg.2387]

Dry The interception and retention by surfaces of gases or particulate matter by diffusion, gravitational settling, or thermal forces. [Pg.1428]

Tackifier A substance applied to a particulate collection device to increase its efficiency in dust retention. [Pg.1480]

Considering the numerous applications, heart-cut LC-LC has convincingly proven its value. Nevertheless, in LC-LC specific method development is generally needed for each analyte. Moreover, heart-cut procedures require accurate timing and, therefore, the performance of the first analytical column in particular should be highly stable to thus yield reproducible retention times. This often means that in LC-LC some kind of sample preparation remains necessary (see Table 11.1) in order to protect the first column from proteins and particulate matter, and to guarantee its lifetime. [Pg.265]

The separation step requires (1) application of a force that produces a differential motion of the particles relative to the gas, and (2) sufficient gas-retention time for the particles to migrate to the collecting surface. Most dust-collections systems are comprised of a pneumatic-conveying system and some device that separates suspended particulate matter from the conveyed air stream. The more common systems use either filter media (e.g., fabric bags) or cyclonic separators to separate the particulate matter from air. [Pg.777]

Natriuretic peptides are a family of peptide hormones. All of them contain a 17-amino acid long ring that is closed by a disulfide bond between two cysteine residues. ANP (atrial natriuretic peptide) is mainly expressed in the atria of the heart, whereas BNP (B-type natriuretic peptide) is synthesized in the ventricular myocardium. CNP occurs mainly in the endothelium and is thought to have a paracrine function. ANF and BNF lower blood pressure by a direct effect on smooth muscle and on the salt retention in the kidney. Natriuretic peptides bind and activate particulate guanylyl cyclases. [Pg.820]

Ultrafiltration of heterogenous colloidal suspensions such as citrus juice is complex and many factors other than molecular weight contribute to fouling and permeation. For example, low MW aroma compounds were unevenly distributed in the permeate and retentate in UF in 500 kd MWCO system (10). The authors observed that the 500 kd MWCO UF removed all suspended solids, including pectin and PE. If PE is complexed to pectate in an inactive complex, then it is conceivable that release of PE from pectin with cations will enhance permeation in UF. At optimum salt concentration, less PE activation was observed at lower pH values than at higher pH (15). In juice systems, it is difficult to separate the effect of juice particulates on PE activity. Model studies with PE extracts allows UF in the absence of large or insoluble particulates and control of composition of the ultrafilter. In... [Pg.478]

The ICRP (1994b, 1995) developed a Human Respiratory Tract Model for Radiological Protection, which contains respiratory tract deposition and clearance compartmental models for inhalation exposure that may be applied to particulate aerosols of americium compounds. The ICRP (1986, 1989) has a biokinetic model for human oral exposure that applies to americium. The National Council on Radiation Protection and Measurement (NCRP) has also developed a respiratory tract model for inhaled radionuclides (NCRP 1997). At this time, the NCRP recommends the use of the ICRP model for calculating exposures for radiation workers and the general public. Readers interested in this topic are referred to NCRP Report No. 125 Deposition, Retention and Dosimetry of Inhaled Radioactive Substances (NCRP 1997). In the appendix to the report, NCRP provides the animal testing clearance data and equations fitting the data that supported the development of the human mode for americium. [Pg.76]

Table 24—Retention of particulate matter in the respiratory tract of standard man... Table 24—Retention of particulate matter in the respiratory tract of standard man...
Nanosized objects perform various functions in the biomedical field. In the human body, nanosized particulate substances behave very differently from larger particles. In 1986, Maeda et al. found that the stained albumin, having a size of several nanometers, naturally accumulates in the region of cancerous tissues, which is now well known as the enhanced permeability and retention (EPR) effect. Many studies in the field of nanoparticles are based on this finding. Another application of nanoparticles is the delivery system using various polyplexes that are composed of carrier molecules and plasmid DNA or nucleic acid drugs such as antisenses and siRNA. In addition, nanofibers are mainly used for biodegradable scaffolds in tissue... [Pg.290]


See other pages where Particulates, retention is mentioned: [Pg.76]    [Pg.29]    [Pg.1010]    [Pg.1822]    [Pg.744]    [Pg.113]    [Pg.438]    [Pg.2203]    [Pg.620]    [Pg.438]    [Pg.76]    [Pg.29]    [Pg.1010]    [Pg.1822]    [Pg.744]    [Pg.113]    [Pg.438]    [Pg.2203]    [Pg.620]    [Pg.438]    [Pg.139]    [Pg.15]    [Pg.146]    [Pg.2400]    [Pg.2401]    [Pg.445]    [Pg.23]    [Pg.41]    [Pg.18]    [Pg.485]    [Pg.26]    [Pg.187]    [Pg.476]    [Pg.56]    [Pg.827]    [Pg.234]    [Pg.904]    [Pg.165]    [Pg.78]    [Pg.200]    [Pg.257]    [Pg.53]    [Pg.503]   


SEARCH



Particulates, retention filter media

© 2024 chempedia.info