Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partially mechanical properties

As shown in Table 3 in an elevated temperature shear test, acrylic/BKUA-2260 systems perform extremely well, while elevated temperature peel shows some fall off in performance. Since the BKUA-2260 is self-crosslinking at elevated temperature and has the ability to co-cure with certain acrylic and vinyl-acrylic latexes, the elevated temperature performance of bonds depends, to some extent, on the previous thermal history of the bond. The shear test involves a slow heat up to test temperature and allows the bond to cure partially. Mechanical properties of thermally cured films of UCAR Latex 154/BKUA-2260 show 10 fold modulus increases over the uncured films. Vinyl-acrylic latexes that do not have the ability to co-cure with the phenolic do not exhibit the same high elevated temperature shear values. [Pg.246]

No polymer is ever 100% crystalline at best, patches of crystallinity are present in an otherwise amorphous matrix. In some ways, the presence of these domains of crystallinity is equivalent to cross-links, since different chains loop in and out of the same crystal. Although there are similarities in the mechanical behavior of chemically cross-linked and partially crystalline polymers, a significant difference is that the former are irreversibly bonded while the latter are reversible through changes of temperature. Materials in which chemical cross-linking is responsible for the mechanical properties are called thermosetting those in which this kind of physical cross-linking operates, thermoplastic. [Pg.26]

The process is used for ferrous P/M stmctural parts that have densities of at least 7.4 g/cm and mechanical properties superior than those of parts that have been only compacted and sintered. Depending on the appHcation, the porous matrix may be infiltrated only partially or almost completely. Copper-base alloy infiltrants have been developed to minimise erosion of the iron matrix. [Pg.187]

The procedures of measuring changes in some physical or mechanical property as a sample is heated, or alternatively as it is held at constant temperature, constitute the family of thermoanalytical methods of characterisation. A partial list of these procedures is differential thermal analysis, differential scanning calorimetry, dilatometry, thermogravimetry. A detailed overview of these and several related techniques is by Gallagher (1992). [Pg.240]

An important subdivision within the thermoplastic group of materials is related to whether they have a crystalline (ordered) or an amorphous (random) structure. In practice, of course, it is not possible for a moulded plastic to have a completely crystalline structure due to the complex physical nature of the molecular chains (see Appendix A). Some plastics, such as polyethylene and nylon, can achieve a high degree of crystallinity but they are probably more accurately described as partially crystalline or semi-crystalline. Other plastics such as acrylic and polystyrene are always amorphous. The presence of crystallinity in those plastics capable of crystallising is very dependent on their thermal history and hence on the processing conditions used to produce the moulded article. In turn, the mechanical properties of the moulding are very sensitive to whether or not the plastic possesses crystallinity. [Pg.4]

In most ionomers, it is customary to fully convert to the metal salt form but, in some instances, particularly for ionomers based on a partially crystalline homopolymer, a partial degree of conversion may provide the best mechanical properties. For example, as shown in Fig. 4, a significant increase in modulus occurs with increasing percent conversion for both Na and Ca salts of a poly(-ethylene-co-methacrylic acid) ionomer and in both cases, at a partial conversion of 30-50%, a maximum value, some 5-6 times higher than that of the acid copolymer, is obtained and this is followed by a subsequent decrease in the property [12]. The tensile strength of these ionomers also increases significantly with increasing conversion but values tend to level off at about 60% conversion. [Pg.148]

For partially crystalline ionomers, such as those based on copolymers of ethylene and methacrylic acid, even time or aging at room temperature can have an effect on mechanical properties. For example, upon aging at 23°C, the modulus of the acid form of the copolymer increased 28%, while in the ionomer form, the increase ranged up to 130%, with the specific gain in modulus depending on the degree of conversion and on the counterion that was present [17]. [Pg.149]

Strain hardened. Material subjected to the application of cold work after annealing (or hot forming) or to a combination of cold work and partial annealing/stabilising in order to secure the specified mechanical properties. The designations 1-8 are in ascending order of tensile strength... [Pg.654]

Even when they have a partial crystallinity, conducting polymers swell and shrink, changing their volume in a reverse way during redox processes a relaxation of the polymeric structure has to occur, decreasing the crystallinity to zero percent after a new cycle. In the literature, different relaxation theories (Table 7) have been developed that include structural aspects at the molecular level magnetic or mechanical properties of the constituent materials at the macroscopic level or the depolarization currents of the materials. [Pg.373]

Epoxidized oils were also used to modify PLA Ali et ah (2009) reported that its use as a plasticizer to improve flexibility. Thermal and scanning electron microscope analysis revealed that epoxidized soybean oil is partially miscible with PLA. Rheological and mechanical properties of PLA/epoxidized soybean oil blends were studied by Xu and Qu (2009) Epoxidized soybean oil exhibited a positive effect on both the elongation at break and melt rheology. Al-Mulla et al. (2010b) also reported that plasticization of PLA (epoxidized palm oil) was carried out via solution casting process using chloroform as a solvent. The results indicated that improved flexibility could be achieved by incorporation of epoxidized palm oil. [Pg.34]

Most PHAs are partially crystalline polymers and therefore their thermal and mechanical properties are usually represented in terms of the glass-to-rubber transition temperature (Tg) of the amorphous phase and the melting temperature (Tm) of the crystalline phase of the material [55]. The melting temperature and glass transition temperature of several saturated and unsaturated PHAs have been summarized in Table 2. [Pg.266]

Maizura M, Fazilah A, Norziah MH and Karim AA. 2007. Antibacterial activity and mechanical properties of partially hydrolyzed sago starch-alginate edible film containing lemongrass oil. J Food Sci 72(6) 324—330. [Pg.353]

Fig. 8. Reconstruction of Young s modulus map in a simulated object. A 3D breast phantom was first designed in silico from MR anatomical images. Then a given 3D Young s modulus distribution was supposed with a 1 cm diameter stiff inclusion of 200 kPa (A). The forward problem was the computing of the 3D-displacement field using the partial differential equation [Eq. (5)]. The efficiency of the 3D reconstruction (inverse problem) of the mechanical properties from the 3D strain data corrupted with 15% added noise can be assessed in (B). The stiff inclusion is detected by the reconstruction algorithm, but its calculated Young s modulus is about 130 kPa instead of 200 kPa. From Ref. 44, reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley Sons, Inc. Fig. 8. Reconstruction of Young s modulus map in a simulated object. A 3D breast phantom was first designed in silico from MR anatomical images. Then a given 3D Young s modulus distribution was supposed with a 1 cm diameter stiff inclusion of 200 kPa (A). The forward problem was the computing of the 3D-displacement field using the partial differential equation [Eq. (5)]. The efficiency of the 3D reconstruction (inverse problem) of the mechanical properties from the 3D strain data corrupted with 15% added noise can be assessed in (B). The stiff inclusion is detected by the reconstruction algorithm, but its calculated Young s modulus is about 130 kPa instead of 200 kPa. From Ref. 44, reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley Sons, Inc.

See other pages where Partially mechanical properties is mentioned: [Pg.1711]    [Pg.381]    [Pg.415]    [Pg.335]    [Pg.324]    [Pg.330]    [Pg.477]    [Pg.313]    [Pg.129]    [Pg.360]    [Pg.62]    [Pg.471]    [Pg.591]    [Pg.383]    [Pg.461]    [Pg.1219]    [Pg.365]    [Pg.6]    [Pg.109]    [Pg.920]    [Pg.1055]    [Pg.193]    [Pg.248]    [Pg.329]    [Pg.80]    [Pg.259]    [Pg.110]    [Pg.121]    [Pg.313]    [Pg.6]    [Pg.185]    [Pg.277]    [Pg.71]    [Pg.150]    [Pg.83]    [Pg.256]    [Pg.302]    [Pg.525]   
See also in sourсe #XX -- [ Pg.449 ]

See also in sourсe #XX -- [ Pg.449 ]




SEARCH



Partial property

© 2024 chempedia.info