Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

P diaryl

An interesting picture was revealed by Gouverd et al. (2006) as a result of comparison between the neutral chromium tricarbonyl complex of C,P-diaryl phosphaalkene [(CO)3Cr<—PhCH=PMes ] and its anion-radical [(CO)3Cr <— PhCH=PMes ] (Mes is 2,4,6-tris(tert-butyl)phenyl). According to the ESR and DFT data for the anion-radical, about 40% of the negative charge is localized on Cr(CO)3 moiety. This is understandable if one takes into account the known electron-acceptor... [Pg.37]

The possibility of this targeted switch between a- and P-arylation found a noteworthy synthetic application (Scheme 7.18) [50], when Hallberg et al. reported the first example of a practical two-step, chelation-controlled triarylation of 89, which provides P,P-diarylated acetophenone derivatives 93 after hydrolysis (89 93). In the first step, a highly regLocontroUed a-arylation was secured by dppp (89 90) in the second step, PhsP allowed for selective twofold P-arylation (90 92) such a... [Pg.235]

Similarly, 5-thiazole alkanoic acids and their salts are obtained from thioamides and /3-halo -y-keto acids (695). Thus thioarylamides condensed with 3-aroyl-3-bromopropionic acid (88) in isopropanolic solution in the presence of Na COs give first 4-hydroxy-2-aryl-A-2-thiazoline-5-acetic acid intermediates (89), which were dehydrated in toluene with catalytic amounts of p-toluene sulfonic acid to 2,4-diaryl-5-thiazole acetic acid (90) (Scheme 39) (657), with R = H or Me Ar = Ph, o-, m- or p-tolyl, o-, m-, or P-CIC6H4, 0-, m-, or p-MeOC(iH4, P-CF3C6H4, a-thienyl, a-naphthyl (657). [Pg.208]

Imidazolinium perchlorate, 4-hydroxy-2,5,5-trimethyl-4-phenyl-synthesis, S, 487 Imidazolinium salts antistatic agents, 1, 409 Imidazolinium salts, 1-vinyl-polymerization, 1, 280 Imidazolin-2-one, 1-cyano-synthesis, S, 482 Imidazolin-2-one, 4,5-dialkyl-synthesis, S, 491 Imidazolin-2-one, 4,5-diaryl-bromination, S, 399-400 lmidazolin-2-one, 4,5-di( p-bromophenyl)-reactions... [Pg.658]

Af,Af-dicyclohexyl-benzothiazole-sulfenamide (DCBS), cobalt naphthenate, and diaryl-p-diphenylene-amine (each 1 phr). [Pg.256]

Phenols give triaryl phosphites P(OAr)3 directly ai " -160 and these react with phosphorous acid to give diaryl phosphonates ... [Pg.515]

Oae and coworkers oxidized several diaryl, dialkyl and alkyl aryl sulfides to their corresponding sulfoxides using purified cytochrome P-450 obtained from rabbit liver microsomes138. In agreement with expectations, this enzyme did not exhibit much stereospecificity. Some examples including the observed e.e. values are shown by 121-125. A model was proposed to account for the absolute configurations of the sulfoxides produced (126). The sulfur atom is preferentially oxidized from the direction indicated. [Pg.78]

K. Schank, in Ref. 1, p. 1149 sulfones from diaryl- and triarylcarbinols A. Schoberl and A. Wagner in Methoden der Organischen Chemie (Houben-Weyl-Mtiller), 4th ed., Vol. 9, Thieme, Stuttgart, 1955, p. 233. [Pg.224]

Olah and coworkers56 found that treatment of dialkyl, arylalkyl and diaryl sulphides with nitronium hexafluorophosphate (or tetrafluoroborate) 32 at —78° in methylene chloride resulted in the formation of sulphoxides in moderate to high yields (Table 3). In the oxidation of diphenyl sulphide which affords diphenyl sulphoxide in 95% yield, small amounts of the ring nitration products (o- and p-nitrophenyl phenyl sulphides) were formed. However, diphenyl sulphone and nitrophenyl phenyl sulphoxide were not detected among the reaction products. [Pg.242]

Chiral alcohols have also been used in an asymmetric synthesis of sulphoxides based on halogenation of sulphides. Johnson and coworkers have found319 that the reaction of benzyl p-tolyl sulphide with JV-chlorobenzotriazole (NCBT) followed by addition of (—) menthol and silver tetrafluoroborate afforded diastereoisomeric menthoxysulphonium salts 267 which, upon recrystallization and hydrolysis, gave benzyl p-tolyl sulphoxide with 87% optical purity (equation 145). More recently, Oae and coworkers reported320 that optically active diaryl sulphoxides (e.e. up to 20%) were formed either by hydrolysis or thermolysis of the corresponding diaryl menthoxysulphonium salts prepared in situ from diaryl sulphides using ( —) menthol and t-butyl hypochlorite. [Pg.295]

In order to account for the unusually facile thermal racemization of optically active allyl p-tolyl sulfoxide (15 R = p-Tol) whose rate of racemization is orders of magnitude faster than that of alkyl aryl or diaryl sulfoxides as a result of a comparably drastically reduced AH (22kcalmol- ), Mislow and coworkers44 suggested a cyclic (intramolecular) mechanism in which the chiral sulfoxide is in mobile equilibrium with the corresponding achiral sulfenate (equation 10). [Pg.723]

Kevan and colleagues69 studied the products of the radiolysis of solid diaryl sulfones at room temperature, such as p,p -ditolyl, diphenyl sulfone and dibenzothiophene-S,S-dioxide. The products found for the first two were S02 and the diaryl hydrocarbon. For p,p -ditolyl sulfone the S02 yield is linear with dose upto about 13 Mrad, above which it falls off considerably from linearity. The initial yields give G(S02) = 0.05, which is equal within experimental error to the yield of p,p -bitolyl. The only another organic product observed had a smaller yield by a factor of 7, and could not be identified. The authors pointed out that no polymeric product was found in contrast to what is known on benzene radiolysis. The mass balance suggests that a simple decomposition as shown by equation 50 is the net consequence of radiolysis. [Pg.913]

In dibenzothiophene-S,S-dioxide the S atom is in a ring, and hence more constrained. The yield of SOz in the radiolysis is linear with the dose to about 13 Mrad after which it levels off as in p,p -ditolyI sulfone. However, the yield of S02 in this case is much lower (a factor of 25) than in the case of p,p -ditolyl sulfone (G = 0.002 compared to G = 0.05). This stability of the dibenzothiophene sulfone could be partially due to back reaction to reform the parent sulfone and partially due to more efficient energy delocalization. The expected biphenylene product was not detected due to limitations of the analytical method. Bowmer and O Donnell70 studied the volatile products in y-radiolysis of dialkyl, alkyl aryl and diaryl sulfones. Table 2 gives the radiolytic yields of S02 and of the hydrocarbon products of the alkyl or aryl radicals. The hydrocarbon products are those obtained either by H atom abstraction or by radical combination. The authors69 suggested the mechanism... [Pg.914]

A (pentamethylcyclopentadienyl)iridium chelating guanidinate complex has been conveniently prepared by treatment of [Cp IrCl2]2 with N,N, N"-th-p-tolylguanidine and base in THF at room temperature followed by recrystallization of the green product from toluene and pentane (Scheme 154). Insertion reactions of the product with heterocumulenes (diaryl carbodiimides, aryl isocyanates) have been investigated. It was found that the complex serves as highly active catalyst for the metathesis of diaryl carbodiimides with each other and for the more difficult metathesis of diaryl carbodiimides with aryl isocyanates (cf. Section V.C). ... [Pg.285]

The condensation of aromatic rings with aldehydes or ketones is called hydroxy-alkylation. The reaction can be used to prepare alcohols, though more often the alcohol initially produced reacts with another molecule of aromatic compound (11-12) to give diarylation. For this the reaction is quite useful, an example being the preparation of l,l,l-trichloro-2, 2-bis (p-Chlorophenyl) ethane (DDT) ... [Pg.719]

Ordinary ketones are generally much more difficult to cleave than trihalo ketones or p-diketones, because the carbanion intermediates in these cases are more stable than simple carbanions. However, nonenolizable ketones can be cleaved by treatment with a 10 3 mixture of t-BuOK—H2O in an aprotic solvent such as ether, dimethyl sulfoxide, 1,2-dimethoxyethane (glyme), and so on, or with sohd t-BuOK in the absence of a solvent. When the reaction is applied to monosubstituted diaryl ketones, that aryl group preferentially cleaves that comes off as the more stable carbanion, except that aryl groups substituted in the ortho position are more readily cleaved than otherwise because of the steric effect (relief of stain). In certain cases, cyclic ketones can be cleaved by base treatment, even if they are enolizable. " OS VI, 625. See also OS VH, 297. [Pg.814]

This reaction is similar to 13-1 and, like that one, generally requires activated substrates. With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO in HMPA. This reaction gives better yields than 13-1 and is used more often. A good solvent is liquid ammonia. The compound NaOMe reacted with o- and p-fluoronitrobenzenes 10 times faster in NH3 at — 70°C than in MeOH. Phase-transfer catalysis has also been used. The reaction of 4-iodotoluene and 3,4-dimethylphenol, in the presence of a copper catalyst and cesium carbonate, gave the diaryl ether (Ar—O—Ar ). Alcohols were coupled with aryl halides in the presence of palladium catalysts to give the Ar—O—R ether. Nickel catalysts have also been used. ... [Pg.862]

Thereafter, however, P-chirogenic phosphine ligands were the subject of less investigation since the synthesis of highly enantiomerically enriched P-stereo-genic phosphines often proves difficult. Another reluctance Hes in the fact that this class of phosphines, especially diaryl- and triarylphosphines, is conforma-tionally unstable and gradually racemize at high temperature [57,58]. In contrast, optically active trialkylphosphines are known to be optically stable even at considerably elevated temperature. [Pg.8]

Due to their weak P-H bonds (-370 kj mol"0 [2] and the high rate constants for the transfer of the P-H hydrogen [3] (/c=1.5 10 L rnoL s" for Ph2PH and k=5,0 10 L mol s for (c-hexyl)2PH), diaryl and dialkyl phosphines present a high interest as H-donors. Since the corresponding phosphinyl radicals are good chain carriers [4,5], diaryl and dialkyl phosphines can be added to olefinic or acetylenic compounds through radical chain reactions. Simpkins et al. [6] used... [Pg.45]

Finally, the N-propargyl-P,P-dialkyl or diaryl phosphinous amides rearrange at room temperature to the P-(4-azabutadienyl)phosphanes 28 [127] (Scheme 29). Interestingly, this rearrangement did not occur in other structurally similar P-N functionalities (R=OEt, OTr, NEt2). [Pg.92]


See other pages where P diaryl is mentioned: [Pg.62]    [Pg.64]    [Pg.560]    [Pg.675]    [Pg.149]    [Pg.175]    [Pg.186]    [Pg.62]    [Pg.95]    [Pg.53]    [Pg.103]    [Pg.237]    [Pg.62]    [Pg.64]    [Pg.560]    [Pg.675]    [Pg.149]    [Pg.175]    [Pg.186]    [Pg.62]    [Pg.95]    [Pg.53]    [Pg.103]    [Pg.237]    [Pg.270]    [Pg.238]    [Pg.84]    [Pg.151]    [Pg.550]    [Pg.643]    [Pg.509]    [Pg.310]    [Pg.363]    [Pg.80]    [Pg.109]    [Pg.555]    [Pg.701]    [Pg.915]    [Pg.337]    [Pg.755]    [Pg.1198]    [Pg.146]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Diaryl-p-phenylenediamines

© 2024 chempedia.info