Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Condensation oxidative

DIRECT COUPLING OF METHANE 3.4.1. Catalytic Oxidative Condensation [Pg.109]

The oxidative coupling of methane to higher hydrocarbons has received considerable attention. Several review articles,291-300 symposia proceedings,301-303 and a collection of papers304 have been devoted to the subject. [Pg.109]

Later studies demonstrated that cyclic operation was not necessary for the attainment of high product selectivities. High selectivities could be obtained on suitable catalysts with contemporaneously fed methane and oxygen in the continuous, catalyst-mediated oxidative coupling of methane. A large-scale catalyst screening [Pg.109]

It was also concluded, however, that a homogeneous (noncatalytic) route is also available, which results in product distributions very similar to those obtained with most catalysts. Presumably, this reaction path also involves methyl radicals  [Pg.111]

Methyl radicals formed in surface reactions enter the gas phase and form ethane, the primary coupling product  [Pg.111]


The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Many of the chemical reactions used to modify lignosulfonates are also used to modify kraft lignins. These include ozonation, alkaline—air oxidation, condensation with formaldehyde and carboxylation with chloroacetic acid (100), and epoxysuccinate (101). In addition, cationic kraft lignins can be prepared by reaction with glycidjiamine (102). [Pg.145]

Rhenium exhibits a greater resistance than tungsten to the water cycle effect, in which lamps and electron tubes become blackened by deposition of metal. This phenomenon involves catalysis by small quantities of water that react with the metal in a hot filament to produce a volatile metal oxide and hydrogen. The oxide condenses on the surface of the bulb and is reduced back to the metal by hydrogen. [Pg.163]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

Sulfation andSulfamation. Sulfamic acid can be regarded as an ammonia—SO. complex and has been used thus commercially, always in anhydrous systems. Sulfation of mono-, ie, primary and secondary, alcohols polyhydric alcohols unsaturated alcohols phenols and phenolethylene oxide condensation products has been performed with sulfamic acid (see Sulfonation and sulfation). The best-known appHcation of sulfamic acid for sulfamation is the preparation of sodium cyclohexylsulfamate [139-05-9] which is a synthetic sweetener (see Sweeteners). [Pg.65]

In a variation of this method, isolation of the ben2hydrol derivative is not required. The methane base undergoes oxidative condensation in the presence of acid with the same or a different arylamine direcdy to the dye. New fuchsine [3248-91 -7] Cl Basic Violet 2 (16), is prepared by condensation of two moles of o-toluidine with formaldehyde in nitrobenzene in the presence of iron salts to give the corresponding substituted diphenylmethane base. This base is also not isolated, but undergoes an oxidative condensation with another mole of o-toluidine to produce the dye. [Pg.272]

Manufacturing procedures for producing dye dispersions are generally not disclosed. The principal dispersants in use include long-chain alkyl sulfates, alkaryl sulfonates, fatty amine—ethylene oxide condensates, fatty alcohol—ethylene oxide condensates, naphthalene—formaldehyde—sulfuric acid condensates, and the lignin sulfonic acids. [Pg.450]

The most suitable method of fast and simple control of the presence of dangerous substances is analytical detection by means of simplified methods - the so-called express-tests which allow quickly and reliably revealing and estimating the content of chemical substances in various objects. Express-tests are based on sensitive reactions which fix analytical effect visually or by means of portable instalments. Among types of indicator reactions were studied reactions of complex formation, oxidation-reduction, diazotization, azocoupling and oxidative condensation of organic substances, which are accompanied with the formation of colored products or with their discoloration. [Pg.374]

Neutral cleaners (non-caustic based) These are ethylene oxide condensates, and easily emulsify the mineral oils and greases. They are more useful for sheet-metal components, which contain no lead compound lubricants (as used for deep-drawing operations), and are also suitable for non-ferrous... [Pg.400]

Tamaoku and colleagues presented an efficient enzymatic photometric determination of hydrogen peroxide ffiat is essentially a color reaction resulting from the oxidative condensation of A/-ethyl-A/-(2-hydroxy-3-sulfopropyl)aniline derivatives wiffi 4-aminoantipyrine in the presence of hydrogen peroxide and peroxidase (82CPB2492). A similar calorimetric detection of hydrogen peroxide has been patented (83GEP3301470). [Pg.144]

The experimental conditions for the syntheses starting from acid chlorides of hydroxamic acids and from nitrile oxides are somewhat different. In the former case the other component of the reaction is organometallic, usually an organomagnesium derivative of an acetylene or, less frequently, a sodium enolate of a /8-diketone. Nitrile oxides condense directly with unsaturated compounds. [Pg.373]

From this point of view, the filter serves not only as separator between the solid and gaseous components of the interaction, but also as a niobium oxide condenser . [Pg.314]

Colorless phosphate ester surfactants were also prepared by treating P4O,0 with an organic OH-containing compound in the presence of a phosphinic acid color inhibitor, e.g., bis(hydroxymethyl)phosphinic acid color inhibitor. Thus, 558 parts dodecanol containing 2.4 parts of phosphinic acid color inhibitor was treated with 142 parts P4O10 at 100-135°C. The phosphate ester surfactant had a VCS color value of 1, whereas a sample prepared without the color inhibitor had a VCS color value of 5. Twenty-eight similar surfactants were prepared using various alcohols and alcohol-alkylene oxide condensates [22]. [Pg.558]

Enzymes responsible for ketone body formation are associated mainly with the mitochondria. Two acetyl-CoA molecules formed in P-oxidation condense with one another to form acetoacetyl-CoA by a reversal of the thiolase reaction. Acetoacetyl-CoA, which is the... [Pg.184]

Several techniques for VOC removal have been investigated such as thermal incineration, catalytic oxidation, condensation, absorption, bio-filtration, adsorption, and membrane separation. VOCs are present in many types of waste gases and are often removed by adsorption [1]. Activated carbon (AC) is commonly used as an adsorbent of gases and vapors because of its developed surface area and large pore volumes [2]. Modification techniques for AC have been used to increase surface adsorption and hence removal capacity, as well as to improve selectivity to organic compounds [3]. [Pg.457]

Cap Gas. Both crude and asphaltene-free oil were used to determine the consequences of low-temperature oxidation. It was found that the oxygen content in an artificial gas cap was completely consumed by chemical reactions (i.e., oxidation, condensation, and water formation) before the asphaltene content had reached equilibrium. [Pg.215]

The production of light coloured products with a requirement for low build-up of static electricity requires the addition of an ingredient which is capable of providing the rubber with a low electrical resistance. Quartemary ammonium salts and ethylene oxide condensates provide one route. Of the common plasticisers, phosphate types have the lowest electrical resistance conferring properties in rubbers. Special antistatic plasticisers, such as polyethylene glycol fatty alcohol ethers, are designed to give rubbers with low surface resistivity. [Pg.136]

What sort of chemical reactions are occurring, for example, oxidation, condensation, hydrolysis. [Pg.21]

The alcohol-unsaturate couplings developed in our laboratory provide products of carbonyl addition. In contrast, related hydrogen auto-transfer processes provide products of alcohol substitution via pathways involving oxidation-condensation-reduction and the use of preactivated nucleophiles. For recent reviews, see [22-25]. [Pg.109]

Vinyl acetate was produced by the catalytic acetylation of acetylene, but this monomer is now produced by the catalytic oxidative condensation of acetic acid and ethylene (structure 17.32). Other vinyl esters can be produced by the transesterification of vinyl acetate with higher boiling carboxylic acids. [Pg.537]

There has been considerable interest in hydroxy-3,3 -bipyridines and 3,3 -bipyridinones. Following from some very early work on the oxidation of citrazinic acid (2,6-dihydroxypyridine-4-carboxylic acid), which was considered to give some polyhydroxy-3,3 -bipyridines, it has been shown that the 3,3 -bipyridinone 59, a product of the hydrolysis of a natural blue pigment from Corynehacterium insidiosum, is obtained by oxidation of 2-hydroxy-5-aminopyridine (60) or 2,6-dihydroxypyridine-4-carboxylic acid 61) 80,83 similar oxidation of 2,6-dihydroxy-3-aminopyridine-4-carboxylic acid affords the natural product indigoidine (20). Numerous related oxidative condensations have been reported subsequently. Cyano-acetamide condensations analogous to those discussed in the synthesis of 2,3 -bipyridines afford, for example, the cyano-substituted 3,3 -bipyridinone 62 588 v, lereas condensation of 3-pyridylacetonitrile with ethyl phenyl-propiolate and ethanol affords compound 63. To complete the section on... [Pg.321]

An automated flow injection spectrophotometric determination of isoxsuprine based on its oxidative condensation with l-nitroso-2-naphthol has been described [37], Oxidation was effected with either Ce(IV) or Pb(IV), and the resulting absorbance monitored at either 540 nm or 510 nm, respectively. [Pg.388]

The in situ nature of this treatment also minimizes potential exposure to humans and the environment. Ex situ options like excavation require repeated worker handhng of the contaminated soil and increased opportunity for volatilization of contaminants (leading to off-site contamination). The off-gas stream generated as part of the SPSH process can be treated using conventional off-gas treatment technologies such as catalytic oxidation, thermal oxidation, condensation, and granular activated carbon (GAC). [Pg.489]


See other pages where Condensation oxidative is mentioned: [Pg.556]    [Pg.182]    [Pg.182]    [Pg.370]    [Pg.308]    [Pg.569]    [Pg.32]    [Pg.254]    [Pg.165]    [Pg.166]    [Pg.179]    [Pg.132]    [Pg.362]    [Pg.310]    [Pg.186]    [Pg.545]    [Pg.34]    [Pg.655]    [Pg.657]    [Pg.532]    [Pg.2]    [Pg.96]    [Pg.290]    [Pg.244]    [Pg.283]    [Pg.384]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.199 ]

See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Condensed oxidation

© 2024 chempedia.info