Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic halides, oxidative addition

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

The postulated steps that constitute the Suzuki coupling process are shown in Scheme 25. After oxidative addition of the organic halide to the palladium(o) catalyst, it is presumed that a metathetical displacement of the halide substituent in the palladium(ii) complex A by ethoxide ion (or hydroxide ion) takes place to give an alkoxo-palladium(ff) complex B. The latter complex then reacts with the alkenylborane, generating the diorganopalladium complex C. Finally, reductive elimination of C furnishes the cross-coupling product (D) and regenerates the palladium(o) catalyst. [Pg.589]

Transition metal complexes that are easy to handle and store are usually used for the reaction. The catalytically active species such as Pd(0) and Ni(0) can be generated in situ to enter the reaction cycle. The oxidative addition of aryl-alkenyl halides can occur to these species to generate Pd(II) or Ni(II) complexes. The relative reactivity for aryl-alkenyl halides is RI > ROTf > RBr > RC1 (R = aryl-alkenyl group). Electron-deficient substrates undergo oxidative addition more readily than those electron-rich ones because this step involves the oxidation of the metal and reduction of the organic aryl-alkenyl halides. Usually... [Pg.483]

Rhodium(I) complexes are effective reagents and/or catalysts for the decarbonylation of acyl halides and aldehydes 9 11,34,195,230,231,236). The compound Rh(PPh3)3Cl, especially, has received considerable attention. The first step in such reactions involves oxidative addition to Rh(I) of the organic molecule, exemplified by the following ... [Pg.134]

Another general process involves the reaction of Pd(0) species with halides or sulfonates by oxidative addition, generating reactive intermediates having the organic group attached to Pd(II) by a ct bond. The oxidative addition reaction is very useful for aryl and alkenyl halides, but the products from saturated alkyl halides often decompose by (3-elimination. The a-bonded species formed by oxidative addition can react with alkenes and other unsaturated compounds to form new carbon-carbon bonds. The... [Pg.707]

The catalytic process is also achieved in the Pd(0)/Cr(II)-mediated coupling of organic halides with aldehydes (Scheme 33) [74], Oxidative addition of a vinyl or aryl halide to a Pd(0) species, followed by transmetallation with a chromium salt and subsequent addition of the resulting organo chromate to an aldehyde, leads to the alcohol 54. The presence of an oxophile [Li(I) salts or MesSiCl] allows the cleavage of the Cr(III) - 0 bond to liberate Cr(III), which is reduced to active Cr(II) on the electrode surface. [Pg.83]

Cross-coupling to form carbon heteroatom bonds occurs by oxidative addition of an organic halide, generation of an aryl- or vinylpalladium amido, alkoxo, tholato, phosphido, silyl, stannyl, germyl, or boryl complex, and reductive elimination (Scheme 2). The relative rates and thermodynamics of the individual steps and the precise structure of the intermediates depend on the substrate and catalyst. A full discussion of the mechanism for each type of substrate and each catalyst is beyond the scope of this review. However, a series of reviews and primary literature has begun to provide information on the overall catalytic process.18,19,22,23,77,186... [Pg.390]

Low-valent nickel complexes of bpy are also efficient electrocatalysts in the reductive coupling reaction of aromatic halides.207 Detailed investigations are in agreement with a reaction mechanism involving the oxidative addition (Equation (40)) of the organic halide to a zero valent complex.208-210 Starting from [Nin(bpy)2(X)2]0 with excess bpy, or from [Nin(bpy)3]2 +, results in the [Ni°(bpy)2]° complex (Equations (37) and (38)). However, the reactive complex is the... [Pg.485]

Metallic zinc is typically covered with a zinc oxide layer that must be removed before the metal can engage in an oxidative addition reaction with organic halides. This activation can be done in one of several ways. [Pg.329]

The general utility of the oxidative addition of functionalized organic halides to zinc was demonstrated by the formation of organozinc iodides 28 from protected (3- and 7-amino acids (Scheme 26).73 The organozinc iodides prepared in this manner were neither sufficiently stable nor sufficiently reactive in THF, but excellent yields were obtained in more polar aprotic solvents, such as DMF and DMSO. [Pg.330]

Scheme 3 refers to oxidative addition of organic halides or derivatives thereof to zero-valent nickel, and to replacement reactions on Ni(II) complexes. [Pg.208]

An intermediate acylnickel halide is first formed by oxidative addition of acyl halides to zero-valent nickel. This intermediate can attack unsaturated ligands with subsequent proton attack from water. It can give rise to benzyl- or benzoin-type coupling products, partially decarbonylate to give ketones, or react with organic halides to give ketones as well. Protonation of certain complexes can give aldehydes. Nickel chloride also acts as catalyst for Friedel-Crafts-type reactions. [Pg.222]

Carbonylation is an exceedingly broad subject, but the main reaction patterns can be easily rationalized by recalling the classification used earlier for coupling reactions involving (a) metallacycles (b) hydride-promoted reactions and (c) oxidative addition of organic halides to zero-valent nickel. In fact, one or other of these steps is necessary to form a species able to undergo carbonylation. [Pg.225]

Restoration of the decayed species to its active valence is thus the key to reactivating the catalyst. It has been known that organic halides with activated C—Cl bonds can add to lower-valent transition metals and convert them to their higher oxidation states by oxidative addition (12-16) ... [Pg.279]

Recently, the groups of Fu and Buchwald have coupled aryl chlorides with arylboronic acids [34, 35]. The methodology may be amenable to large-scale synthesis because organic chlorides are less expensive and more readily available than other organic halides. Under conventional Suzuki conditions, chlorobenzene is virtually inert because of its reluctance to oxidatively add to Pd(0). However, in the presence of sterically hindered, electron-rich phosphine ligands [e.g., P(f-Bu)3 or tricyclohexylphosphine], enhanced reactivity is acquired presumably because the oxidative addition of an aryl chloride is more facile with a more electron-rich palladium complex. For... [Pg.7]

Vinyl- [64] and aryl triflates [65] as pseudo organic halides readily couple with stannylpyridines as long as more than one equivalent of LiCl is present in the reaction mixture. Presumably, the transmetalation is facilitated by replacing triflate with Cl at the palladium intermediate generated from oxidative addition. For example, 2-(benzopyran-4-yl)pyridine 80 was obtained from treatment of vinyl triflate 79 with 2-trimethylstannylpyridine in the presence of Pd2(dba)3(CHCl3)-Ph3P and LiCl [64],... [Pg.200]

Incorporation of CO into an organic substrate usually occurs by insertion of CO into a C-metal bond. The requisite Cl-metal bond is formed by oxidative addition of a Pd(0) species into the Cl-Br bond, the normal first step upon combining a Pd(0) compound and an aryl halide. Coordination and insertion of CO follows. Addition of N to the carbonyl and loss of Pd(0) gives an iminium ion, which is trapped by EtOH to give the product. [Pg.177]

The oxidative addition of alkyl halides can proceed in different ways, although the result is usually atrans addition independent of the mechanism. In certain cases the reaction proceeds as an SN2 reaction as in organic chemistry. That is to say that the electron-rich metal nucleophile attacks the carbon atom of the alkyl halide, the halide being the leaving group. This process leads to inversion of the stereochemistry of the carbon atom (only when the carbon atom is asymmetric can this be observed). There are also examples in which racemisation occurs. This has been explained on the basis of a radical chain... [Pg.37]

The reaction starts with the oxidative addition of an aryl halide (Cl, Br or I) to palladium zero. The next step is the insertion of an alkene into the palladium carbon bond just formed. The third step is (3-hydride elimination giving the organic product and a palladium hydrido halide. The latter reductively eliminates HX, which reacts with base to give a salt (Figure 13.15). [Pg.281]


See other pages where Organic halides, oxidative addition is mentioned: [Pg.222]    [Pg.222]    [Pg.3]    [Pg.6]    [Pg.209]    [Pg.6]    [Pg.6]    [Pg.127]    [Pg.209]    [Pg.267]    [Pg.567]    [Pg.53]    [Pg.563]    [Pg.723]    [Pg.18]    [Pg.559]    [Pg.322]    [Pg.486]    [Pg.486]    [Pg.329]    [Pg.202]    [Pg.195]    [Pg.197]    [Pg.217]    [Pg.11]    [Pg.71]    [Pg.55]    [Pg.36]    [Pg.264]    [Pg.291]    [Pg.286]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



Direct Oxidative Addition of Magnesium to Organic Halides

Halide additives

Halide oxidation

Halides oxidative addition

Halides oxides

Halides, organic

Organic addition

Organic additives

Organic halides direct oxidative addition

Organic oxidant

Organic oxidation

Oxidative addition, zinc metal organic halide

Reactions Involving Oxidative Addition of Organic Halides

© 2024 chempedia.info