Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zero valent nickel

A low temperature catalytic process has been reported (64). The process involves the divalent nickel- or zero-valent palladium-catalyzed self-condensation of halothiophenols in an alcohol solvent. The preferred halothiophenol is -bromothiophenol. The relatively poor solubiHty of PPS under the mild reaction conditions results in the synthesis of only low molecular weight PPS. An advantage afforded by the mild reaction conditions is that of making telecheHc PPS with functional groups that may not survive typical PPS polymerization conditions. [Pg.444]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Coordination-catalyzed ethylene oligomerization into n-a-olefins. The synthesis of homologous, even-numbered, linear a-olefins can also be performed by oligomerization of ethylene with the aid of homogeneous transition metal complex catalysts [26]. Such a soluble complex catalyst is formed by reaction of, say, a zero-valent nickel compound with a tertiary phosphine ligand. A typical Ni catalyst for the ethylene oligomerization is manufactured from cyclo-octadienyl nickel(O) and diphenylphosphinoacetic ester ... [Pg.14]

Late transition metal or 3d-transition metal irons, such as cobalt, nickel, and copper, are important for catalysis, magnetism, and optics. Reduction of 3d-transition metal ions to zero-valent metals is quite difficult because of their lower redox potentials than those of noble metal ions. A production of bimetallic nanoparticles between 3d-transi-tion metal and noble metal, however, is not so difficult. In 1993, we successfully established a new preparation method of PVP-protected CuPd bimetallic nanoparticles [71-73]. In this method, bimetallic hydroxide colloid forms in the first step by adjusting the pH value with a sodium hydroxide solution before the reduction process, which is designed to overcome the problems caused by the difference in redox potentials. Then, the bimetallic species... [Pg.53]

Iron(II), cobalt(II), and nickel(II) monothiocyanato complexes also catalyze evolution of hydrogen in aqueous buffer. The active intermediate is the protonated doubly reduced, zero-valent form of the complex.45... [Pg.476]

Low-valent nickel complexes of bpy are also efficient electrocatalysts in the reductive coupling reaction of aromatic halides.207 Detailed investigations are in agreement with a reaction mechanism involving the oxidative addition (Equation (40)) of the organic halide to a zero valent complex.208-210 Starting from [Nin(bpy)2(X)2]0 with excess bpy, or from [Nin(bpy)3]2 +, results in the [Ni°(bpy)2]° complex (Equations (37) and (38)). However, the reactive complex is the... [Pg.485]

Scheme 6. Interplay of the C8- and C -production channels for the cyclo-oligomerization of 1,3-butadiene with zero valent PR3/P(OR)3-stabilized nickel complexes as the catalyst. Free energies (AG, AGJ in kcalmol-1) are given relative to the favorable rf-synrfiC A-cis isomer of 2a for catalysts bearing strong a-donor ligands namely I (L = PMe3), III (L = PPrj), VI (L = PBU3), and -acceptor ligands namely V (L = P(OMe)3), IV... Scheme 6. Interplay of the C8- and C -production channels for the cyclo-oligomerization of 1,3-butadiene with zero valent PR3/P(OR)3-stabilized nickel complexes as the catalyst. Free energies (AG, AGJ in kcalmol-1) are given relative to the favorable rf-synrfiC A-cis isomer of 2a for catalysts bearing strong a-donor ligands namely I (L = PMe3), III (L = PPrj), VI (L = PBU3), and -acceptor ligands namely V (L = P(OMe)3), IV...
Cj) Treatment of zero-valent nickel complexes with Br0nsted acids. [Pg.107]

C2) Treatment of zero-valent nickel complexes with Lewis acids, whereby the Lewis acid can also be an organometallic species. [Pg.107]

These catalysts should be clearly distinguished from those active for the cyclooligomerization of conjugated dienes, etc., which are based on zero-valent nickel compounds... [Pg.107]

There can be little doubt that the active species involved in most or even all of the various combinations described in Section II is HNi(L)Y (see below), because the different catalysts prepared by activating the nickel with Lewis acids have been shown to produce, under comparable conditions, dimers and codimers which have not only identical structures but identical compositions. On modification of these catalysts by phosphines, the composition of dimers and codimers changes in a characteristic manner independent of both the method of preparation and the nickel compound (2, 4, 7, 16, 17, 26, 29, 42, 47, 76). Similar catalysts are formed when organometallic or zero-valent nickel complexes are activated with strong Lewis acids other than aluminum halides or alkylaluminum halides, e.g., BFS. [Pg.114]

The formation of cationic nickel hydride complexes by the oxidative addition of Brdnsted acids (HY) to zero-valent nickel phosphine or phosphite complexes (method C,) has already been discussed in Section II. Interesting in this connection is a recent H NMR study of the reaction of bis[tri(o-tolyl)phosphite]nickelethylene and trifluoroacetic acid which leads to the formation of a square-planar bis[tri(o-tolyl)phosphite] hydridonickel trifluoroacetate (30) (see below) having a cis arrangement of the phosphite ligands (82). [Pg.118]

Less clear is the sequence which leads to the formation of the active species in the case of catalysts prepared from zero-valent nickel complexes and aluminum halides or alkylaluminum halides (method C2). The catalytic properties of these systems, however—in particular, the influence of phosphines (76)—leaves no doubt that the active species is also of the HNiY type discussed above. In this connection, a recent electron spin resonance report that nickel(I) species are formed in the reaction of COD2Ni with AlBr3 (83 ), and the disproportionation of Ni(I) to Ni(II) and Ni(0) in the presence of Lewis acids (69) should be mentioned. [Pg.118]

Scheme 1 is illustrated by the following examples (see also Table I), which can all be interpreted as involving oxidative addition to zero-valent nickel leading to metallacycles. [Pg.199]

The reactions covered in Scheme 2 are initiated by protonation but a hydride could form on the metal as intermediate. In some instances, cationic metal hydrides have been shown to be actually involved. See, for example, the addition of [HNi (POEt)3 4+] to butadiene (54) or of [HNi(Ph3P)3(7r-C3H5)] to olefins (10c, Vol. II, p. 25). Thus the reaction of olefins or dienes with acids in the presence of zero-valent nickel may be considered proton-promoted as well as hydride-promoted. [Pg.204]

Scheme 3 refers to oxidative addition of organic halides or derivatives thereof to zero-valent nickel, and to replacement reactions on Ni(II) complexes. [Pg.208]

Some of these coupling reactions can be made catalytic if hydrogen is eliminated and combines with the anion, thus leaving the nickel complex in the zero-valent state. Allylation of alkynes or of strained olefins with allylic acetates and nickel complexes with phosphites has been achieved (example 38, Table III). [Pg.217]

Baker has also reported the reaction of butadiene with phenylhydra-zones leading to azoalkenes (example 14, Table IV). This is also a Grig-nard-type reaction which is catalytic. Analogous results were obtained with methylhydrazones (136). A wider scope was recently attained by causing allylic esters to react with phenylhydrazones in the presence of zero-valent nickel complexes having trialkyl phosphites (example 15, Table IV). [Pg.221]

An intermediate acylnickel halide is first formed by oxidative addition of acyl halides to zero-valent nickel. This intermediate can attack unsaturated ligands with subsequent proton attack from water. It can give rise to benzyl- or benzoin-type coupling products, partially decarbonylate to give ketones, or react with organic halides to give ketones as well. Protonation of certain complexes can give aldehydes. Nickel chloride also acts as catalyst for Friedel-Crafts-type reactions. [Pg.222]

Carbonylation is an exceedingly broad subject, but the main reaction patterns can be easily rationalized by recalling the classification used earlier for coupling reactions involving (a) metallacycles (b) hydride-promoted reactions and (c) oxidative addition of organic halides to zero-valent nickel. In fact, one or other of these steps is necessary to form a species able to undergo carbonylation. [Pg.225]

Zero-valent nickel-chelating phosphine complexes are used at 120°C under C02 pressure. [Pg.234]

Oxidative addition of the silyl species to nickel is followed by insertion of unsaturated substrates. Zero-valent nickel complexes, and complexes prepared by reducing nickel acetylacetonate with aluminum trialkyls or ethoxydialkyls, and in general Ziegler-Natta-type systems, are effective as catalysts (244, 260-262). Ni(CO)4 is specific for terminal attack of SiHCl3 on styrene (261). [Pg.243]

Harrison, K.N., Hoye, P.A.T., Orpen, A.G., Pringle, P.G., and Smith, M.B., Water-soluble, zero-valent, platinum-, palladium,- and nickel-P(CH2OH)3 complexes catlaysts for the addition of phosphine to formaldehyde, J. Chem. Soc., Chem. Commun., 1096, 1989. [Pg.108]

A large number of (mostly zero-valent) nickel-alkene complexes has been reported. Although these complexes have not been recently reviewed, their general properties and structures were expertly described in 1982 [21]. A complete overview of the reported nickel-alkene and nickel-alkyl complexes is beyond the scope of this section, in which a selection of nickel-alkene and nickel-alkyl complexes is described, mostly related to possible intermediates in hydrogenation catalysis. [Pg.99]

Only in homoleptic M(L)2 (L = 1,3-dimesitylimidazolin-2-ylidene) of zero-valent nickel and platinum significantly shorter metal-carbon bonds for NHCs and, thus, metal-to-ligand back donation can be observed. The Ni-C bond length is about 0.15 A shorter than in [Ni(CO)2(L)2] (L = 1,3-dimesitylimidazolin-2-ylidene) which cannot be explained exclusively by the change of the coordination number. [Pg.34]


See other pages where Zero valent nickel is mentioned: [Pg.173]    [Pg.347]    [Pg.125]    [Pg.212]    [Pg.99]    [Pg.297]    [Pg.190]    [Pg.113]    [Pg.113]    [Pg.114]    [Pg.122]    [Pg.167]    [Pg.198]    [Pg.199]    [Pg.216]    [Pg.222]    [Pg.224]    [Pg.291]    [Pg.952]    [Pg.338]    [Pg.486]    [Pg.178]   
See also in sourсe #XX -- [ Pg.403 ]

See also in sourсe #XX -- [ Pg.182 ]




SEARCH



© 2024 chempedia.info