Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation reactions acetate

The carboxyl group of acids appears to deactivate the hydrogens on the alpha carbon atom toward attack by the free-radical flux in oxidation reactions. Acetic acid, therefore, is particularly inert toward further oxidation (hydrogens are both primary and deactivated) (48). For this reason, it is feasible to produce acetic acid by the oxidation of butane (in the Hquid phase), even under rather severe oxidation conditions under which most other products are further oxidized to a significant extent (22). [Pg.336]

Diphenic acid. Phenanthrene upon oxidation in acetic acid solution at 85° with 30 per cent, hydrogen peroxide gives diphenic acid (diphenyl-2 2 -di-carboxyHc acid) no phenanthraquinone is formed under these experimental conditions. The reaction is essentially an oxidation of phenanthrene with peracetic acid. (For another method of preparation, see Section I V,74.)... [Pg.755]

The intramolecular oxidative earbonylation has wide synthetie applieation. The 7-lactone 247 is prepared by intramolecular oxycarbonylation of the alke-nediol 244 with a stoichiometric amount of Pd(OAc)2 under atmospheric pres-sure[223]. The intermediate 245 is formed by oxypalladation, and subsequent CO insertion gives the acylpalladium 246. The oxycarbonylation of alkenols and alkanediols can be carried out with a catalytic amount of PdCl2 and a stoichiometric amount of CuCb, and has been applied to the synthesis of frenolicin(224] and frendicin B (249) from 248[225]. The carbonylation of the 4-penten-l,3-diol 250, catalyzed by PdCl2 and CuCl2, afforded in the c -3-hydroxytetrahydrofuran-2-aeetie acid lactone 251[226J. The cyclic acetal 253 is prepared from the dienone 252 in the presence of trimethyl orthoformate as an accepter of water formed by the oxidative reaction[227]. [Pg.54]

The oxidative reaction of furan with bromine in methanol solution or an electrochemical process using sodium bromide produces 2,5-dimethoxy-2,5-dihydrofuran (19), which is a cycHc acetal of maleic dialdehyde. The double bond in (19) can be easily hydrogenated to produce the corresponding succindialdehyde derivative. Both products find appHcation in photography and as embalming materials, as well as other uses. [Pg.82]

Glycohc acid also undergoes reduction or hydrogenation with certain metals to form acetic acid, and oxidation by hydrogen peroxide ia the presence of ferrous salts to form glyoxylic acid [298-12A], HCOCOOH, and ia the presence of ferric salts ia neutral solution to form oxaHc acid, HOOCCOOH formic acid, HCOOH and Hberate CO2 and H2O. These reduction and oxidation reactions are not commercially significant. [Pg.516]

Iron(III) acetate [1834-30-6], Ee(C2H202)3, is prepared industrially by treatment of scrap iron with acetic acid followed by air oxidation. Iron(III) acetate is used as a catalyst in organic oxidation reactions, as a mordant, and as a starting material for the preparation of other iron-containing compounds. [Pg.433]

Acid Oxidation. Reactions of lead with acid and alkaUes are varied. Nitric acid, the best solvent for lead, forms lead nitrate acetic acid forms soluble lead acetate in the presence of oxygen sulfuric acid forms insoluble lead sulfate. Sulfuric acid is stored in containers with chemical or acid-grade lead. Lead dissolves slowly in HCl, but in the presence of aqueous alkaUes forms soluble plumbites and plumbates. [Pg.33]

Weak to moderate chemiluminescence has been reported from a large number of other Hquid-phase oxidation reactions (1,128,136). The Hst includes reactions of carbenes with oxygen (137), phenanthrene quinone with oxygen in alkaline ethanol (138), coumarin derivatives with hydrogen peroxide in acetic acid (139), nitriles with alkaline hydrogen peroxide (140), and reactions that produce electron-accepting radicals such as HO in the presence of carbonate ions (141). In the latter, exemplified by the reaction of h on(II) with H2O2 and KHCO, the carbonate radical anion is probably a key intermediate and may account for many observations of weak chemiluminescence in oxidation reactions. [Pg.269]

Whereas this reaction was used to oxidize ethylene (qv) to acetaldehyde (qv), which in turn was oxidized to acetic acid, the direct carbonylation of methanol (qv) to acetic acid has largely replaced the Wacker process industrially (see Acetic acid and derivatives). A large number of other oxidation reactions of hydrocarbons by oxygen involve coordination compounds as detailed elsewhere (25). [Pg.171]

The earliest attempts to prepare deuterated steroids were carried out by exchange reactions of aliphatic hydrogens with deuterium in the presence of a surface catalyst. Cholesterol, for example, has been treated with platinum in a mixture of deuterium oxide and acetic acid-OD, and was found to yield... [Pg.157]

The formation of a-acetoxyketones by oxidation of enamines with thallic acetate has been studied in detail (27) and found to be of preparative value (80 % yields) particularly in five- and six-membered-ring ketone derivatives. Enamines of linear or seven-membered-ring ketones were oxidized also, but at very much slower rates. Enamines of aldehydes with a-hydrogen substituents underwent self-eondensations during the oxidation reactions. Lead tetraacetate was less satisfactory as an oxidizing agent. [Pg.412]

Ihc acetate are. however, less stable but are involved in the catalysis of a number of oxidation reactions by Co carboxylates. [Pg.1126]

The A -oxide reactions in quinazoline 3-oxide are, however, modified to a certain extent by the aforementioned properties. Thus, whereas it can be reduced to quinazoline with phosphorus trichloride or iron and ferrous sulfate in ethanol, reactions with alkali, acetic anhydride, and benzoyl chloride in the presence of cyanide result in ring fission (Scheme 4). [Pg.279]

On the other hand, the catalytic oxidation of a n-butane, using either cobalt or manganese acetate, produces acetic acid at 75-80% yield. Byproducts of commercial value are obtained in variable amounts. In the Celanese process, the oxidation reaction is performed at a temperature range of 150-225°C and a pressure of approximately 55 atmospheres. ... [Pg.175]

The production of acetic acid from n-butene mixture is a vapor-phase catalytic process. The oxidation reaction occurs at approximately 270°C over a titanium vanadate catalyst. A 70% acetic acid yield has been reported. The major by-products are carbon oxides (25%) and maleic anhydride (3%) ... [Pg.239]

The production rate of acetic acid was 2kg-h 1, where the maximum acetic acid concentration was 12%. Air was pumped into the fermenter with a molar flow rate of 200 moMi-. The chemical reaction is presented in (E. 1.1) and flow diagram in Figure 9.5. Determine the minimum amount of ethanol intake and identify the required mass balance for the given flow sheet. The ethanol biochemical oxidation reaction using A. aceti is ... [Pg.239]

Histories . The Na salt was first isolated by the reaction of nitric oxide on acet (Ref 2) later the same worker found that the action of nitric oxide and Na hydroxide on any compd contg the acetyl group would give Na MEDNA [compds treated were mesityl oxide, methylisopropyl ketone, acetophenone, and ethyl dimethyl-... [Pg.71]

Comparative reactions of nitrogen compounds with the isoelectronic series, mercury(II), thal-lium(III) and lead(IV) acetates. Principles of oxidation reactions. R. N. Butler, Chem. Rev., 1984, 84, 249-276 (307). [Pg.66]

The addition of various Kolbe radicals generated from acetic acid, monochloro-acetic acid, trichloroacetic acid, oxalic acid, methyl adipate and methyl glutarate to acceptors such as ethylene, propylene, fluoroolefins and dimethyl maleate is reported in ref. [213]. Also the influence of reaction conditions (current density, olefin-type, olefin concentration) on the product yield and product ratios is individually discussed therein. The mechanism of the addition to ethylene is deduced from the results of adsorption and rotating ring disc studies. The findings demonstrate that the Kolbe radicals react in the surface layer with adsorbed ethylene [229]. In the oxidation of acetate in the presence of 1-octene at platinum and graphite anodes, products that originate from intermediate radicals and cations are observed [230]. [Pg.114]

The photo-Kolbe reaction is the decarboxylation of carboxylic acids at tow voltage under irradiation at semiconductor anodes (TiO ), that are partially doped with metals, e.g. platinum [343, 344]. On semiconductor powders the dominant product is a hydrocarbon by substitution of the carboxylate group for hydrogen (Eq. 41), whereas on an n-TiOj single crystal in the oxidation of acetic acid the formation of ethane besides methane could be observed [345, 346]. Dependent on the kind of semiconductor, the adsorbed metal, and the pH of the solution the extent of alkyl coupling versus reduction to the hydrocarbon can be controlled to some extent [346]. The intermediacy of alkyl radicals has been demonstrated by ESR-spectroscopy [347], that of the alkyl anion by deuterium incorporation [344]. With vicinal diacids the mono- or bisdecarboxylation can be controlled by the light flux [348]. Adipic acid yielded butane [349] with levulinic acid the products of decarboxylation, methyl ethyl-... [Pg.140]

Liquid phase oxidation reaction of acetaldehyde with Mn acetate catalyst can be considered as pseudo first order irreversible reaction with respect to oxygen, and the reaction occurred in liquid film. The value of kinetic constant as follow k/ = 6.64.10 exp(-12709/RT), k2 = 244.17 exp(-1.8/RT) and Lj = 3.11.10 exp(-13639/RT) m. kmor. s. The conversion can be increased by increasing gas flow rate and temperature, however the effect of impeller rotation on the conversion is not significant. The highest conversion 32.5% was obtained at the rotation speed of 900 rpm, temperature 55 C, and gas flow rate 10" m. s. The selectivity of acetic acid was affected by impeller rotation speed, gas flow rate and temperature. The highest selectivity of acetic acid was 70.5% at 500 rpm rotation speed, temperature of 55 C... [Pg.224]

Induced oxidation of alcohols by hydrogen peroxide was studied by Kolthoff and Medalia . According to their measurements the value of F-, increases with the increase in the concentration of ethanol, while it decreases with increase in the acid concentration (see Table 16). In acetic acid medium the value of F[ is considerably lower. Chloride ions effectively suppress the induced oxidation of alcohols. The main product of the oxidation of ethanol is acetaldehyde which can be further oxidized to acetic acid. The data on the induced oxidation of alcohol (H2A) can be interpreted by reactions (53), (98), (99) and (57). [Pg.565]

In the present study, we report the synthesis, characterisation and catalytic properties (in selective oxidation reactions) of copper acetate, copper tetradecachlorophthalocyanine and copper tetranitrophthalocyanine encapsulated in molecular sieves Na-X, Na-Y, MCM-22 and VPI-5. Both molecular oxygen and aqueous HjOj have been used as the oxidants. The... [Pg.181]

The Pummerer reaction of conformationally rigid 4-aryl-substituted thiane oxides with acetic anhydride was either stereoselective or stereospecific, and the rearrangement is mainly intermolecular, while the rate-determining step appears to be the E2 1,2-elimination of acetic acid from the acetoxysulfonium intermediates formed in the initial acetylation of the sulfoxide. The thermodynamically controlled product is the axial acetoxy isomer, while the kinetically controlled product is the equatorial isomer that is preferentially formed due to the facile access of the acetate to the equatorial position . The overall mechanism is illustrated in equation 129. [Pg.470]

The anodic oxidation reaction of sulphoxides was not much studied, and just a few reports are available so far. The conversion into the corresponding sulphones of some phenyl alkyl and diaryl sulphoxides (oxidation potential for 86 + 2.07 V vs. SCE in acetonitrile/NaC104 electrolyte, Pt anode) has been reported. Similarly, diphenyl suiphoxide was long known to be transformed in a quantitative yield into the sulphone (Pt anode, solvent glacial acetic acid). Additional examples of the oxidation of a suiphoxide function attached to aryl groups are available . [Pg.1043]


See other pages where Oxidation reactions acetate is mentioned: [Pg.73]    [Pg.35]    [Pg.20]    [Pg.521]    [Pg.523]    [Pg.329]    [Pg.105]    [Pg.308]    [Pg.196]    [Pg.42]    [Pg.235]    [Pg.194]    [Pg.1043]    [Pg.178]    [Pg.292]    [Pg.192]    [Pg.198]    [Pg.28]    [Pg.146]    [Pg.221]    [Pg.183]    [Pg.190]    [Pg.241]    [Pg.360]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Acetalization-oxidation

Acetals oxidation

Acetate oxidation

Acetic oxide

Glucose, acetic anhydride reaction oxidation

Heck reaction palladium acetate - oxidants

Pyridine 1-oxide reaction with acetic anhydride

Tertiary amine oxides, Polonovski reactions, acetic anhydride

© 2024 chempedia.info