Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Classes of Methods

The classical electrochemical methods are based on the simultaneous measurement of current and electrode potential. In simple cases the measured current is proportional to the rate of an electrochemical reaction. However, generally the concentrations of the reacting species at the interface are different from those in the bulk, since they are depleted or accumulated during the course of the reaction. So one must determine the interfacial concentrations. There axe two principal ways of doing this. In the first class of methods one of the two variables, either the potential or the current, is kept constant or varied in a simple manner, the other variable is measured, and the surface concentrations are calculated by solving the transport equations under the conditions applied. In the simplest variant the overpotential or the current is stepped from zero to a constant value the transient of the other variable is recorded and extrapolated back to the time at which the step was applied, when the interfacial concentrations were not yet depleted. In the other class of method the transport of the reacting species is enhanced by convection. If the geometry of the system is sufficiently simple, the mass transport equations can be solved, and the surface concentrations calculated. [Pg.173]

Other Classes of Methods 2.5.1 Runge-Kutta Methods... [Pg.89]

So far, we have mentioned methods that produce all-electron diabatic wavefunctions and corresponding Hamiltonian matrix elements. There are two other classes of methods which simplify the quantum problem by focusing on the wavefunction of the transferred charge such as methods making use of the frozen core approximation Fragment Orbital methods (FO), and methods that assume the charge to be localized on single atomic orbitals [50]. In this work, we will also treat these computationally low-cost methods. [Pg.104]

Several methods require the value of V (t) at some point other than t = t and these cannot be solved without further approximation or iteration. The class of methods that only require information from time level n, or previous time levels, is called explicit methods. The other class of methods that require information fi om time level n+ and thus solved by an iterative procedure are named implicit. Explicit methods are relatively easy to program and use little computer memory and computation time per step but are unstable if the time step is large. On the other hand, implicit methods require iterative solution to obtain the values at the new time step. This makes them... [Pg.1124]

Memfield s concept of a solid phase method for peptide synthesis and his devel opment of methods for carrying it out set the stage for an entirely new way to do chem ical reactions Solid phase synthesis has been extended to include numerous other classes of compounds and has helped spawn a whole new field called combinatorial chemistry Combinatorial synthesis allows a chemist using solid phase techniques to prepare hun dreds of related compounds (called libraries) at a time It is one of the most active areas of organic synthesis especially m the pharmaceutical industry... [Pg.1142]

In the dyestuff industry, anthraquinone still ranks high as an intermediate for the production of dyes and pigments having properties unattainable by any other class of dyes or pigments. Its cost is relatively high and will remain so because of the equipment and operations involved in its manufacture. As of May 1991, anthraquinone sold for 4.4/kg in ton quantities. In the United States and abroad, anthraquinone is manufactured by a few large chemical companies (62). At present, only two processes for its production come into consideration manufacture by the Friedel-Crafts reaction utilizing benzene, phthahc anhydride, and anhydrous aluminum chloride, and by the vapor-phase catalytic oxidation of anthracene the latter method is preferred. [Pg.424]

Both methods described above belong to a class of methods that is also called partitioning or optimization or partitioning-optimization techniques. They partition the set of objects into subsets according to some optimization criterion. Both methods use representative elements, in one case an object of the set to be clustered (the centrotype), in the other an object with real values for the variables that is not necessarily (and usually not) part of the objects to be clustered (the centroid). [Pg.78]

Radialenes represent the biggest and best known subset of the radialene family this is not surprising in view of the fact that more methods to prepare them exist than for any other class of radialenes. The major strategies are the transformation of appropriate cyclobutane derivatives, the thermal or Ni(0)-catalyzed cyclodimerization of butatrienes or higher cumulenes and the cyclotetramerization of (l-bromo-l-alkenyl)cuprates. [Pg.945]

Another class of methods of unidimensional minimization locates a point x near x, the value of the independent variable corresponding to the minimum of /(x), by extrapolation and interpolation using polynomial approximations as models of/(x). Both quadratic and cubic approximation have been proposed using function values only and using both function and derivative values. In functions where/ (x) is continuous, these methods are much more efficient than other methods and are now widely used to do line searches within multivariable optimizers. [Pg.166]

A wide range of other methods from analytical chemistry have been applied to archaeological samples, but space precludes detailed descriptions of them all. Some, such as XPS, have only been employed sporadically because of the specialized nature of the technique. Others are increasing in application as their archaeological potential is explored. One class of methods which has had some application are resonance techniques (e.g., Ewing, 1985 Chapter 13). These are based on another aspect of the interaction between matter and electromagnetic... [Pg.68]

The free electron (FEMO) theory had its origins in work on the conduction electrons of metals in the 1940s, when several workers independently recognised the close analogy between these and the delocalised Jt-electrons of polyene dyes. The method was extended to many other classes of dyes, notably by Kuhn in the 1950s, but it has not found general acceptance for spectroscopic calculations, since it lacks adaptability by simple parameter adjustment. [Pg.16]

In a method described by Bates and Carpenter [8] for the characterization of organosulphur compounds in the lipophilic extracts of marine sediments these workers showed that the main interference is elemental sulphur (S8). Techniques for its elimination are discussed. Saponification of the initial extract is shown to create organosulphur compounds. Activated copper removes S8 from an extract and appears neither to create nor to alter organosulphur compounds. However, mercaptans and most disulphides are removed by the copper column. The extraction efficiency of several other classes of sulphur compounds is 80-90%. Extracts are analyzed with a glass capillary gas chromatograph equipped with a flame photometric detector. Detection limit is lg S and precision 10%. [Pg.198]


See other pages where Other Classes of Methods is mentioned: [Pg.2]    [Pg.1020]    [Pg.91]    [Pg.93]    [Pg.21]    [Pg.2]    [Pg.1020]    [Pg.91]    [Pg.93]    [Pg.21]    [Pg.742]    [Pg.41]    [Pg.515]    [Pg.469]    [Pg.9]    [Pg.196]    [Pg.11]    [Pg.238]    [Pg.67]    [Pg.178]    [Pg.297]    [Pg.6]    [Pg.257]    [Pg.738]    [Pg.7]    [Pg.9]    [Pg.532]    [Pg.930]    [Pg.282]    [Pg.180]    [Pg.94]    [Pg.16]    [Pg.236]    [Pg.74]    [Pg.255]    [Pg.51]    [Pg.228]    [Pg.187]    [Pg.56]    [Pg.252]    [Pg.255]    [Pg.256]   


SEARCH



Class method

Classes of methods

Others methods

© 2024 chempedia.info