Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic reactions, chemical reactivity

The reaction of an alcohol with a hydrogen halide is a substitution A halogen usually chlorine or bromine replaces a hydroxyl group as a substituent on carbon Calling the reaction a substitution tells us the relationship between the organic reactant and its prod uct but does not reveal the mechanism In developing a mechanistic picture for a par ticular reaction we combine some basic principles of chemical reactivity with experi mental observations to deduce the most likely sequence of steps... [Pg.153]

The value of alkyl halides as starting materials for the preparation of a variety of organic functional groups has been stressed many times In our earlier discussions we noted that aryl halides are normally much less reactive than alkyl halides m reactions that involve carbon-halogen bond cleavage In the present chapter you will see that aryl halides can exhibit their own patterns of chemical reactivity and that these reac tions are novel useful and mechanistically interesting... [Pg.971]

Professor Ronald Breslow of Columbia University has car ried out a number of organic reactions in the presence of cyclodextrms to study the effect of a molecule s envi ronment on its chemical reactivity... [Pg.1049]

Adsorption and Surface Chemical Grafting. As with siHca and many other siHcate minerals, the surface of asbestos fibers exhibit a significant chemical reactivity. In particular, the highly polar surface of chrysotile fibers promotes adsorption (physi- or chemisorption) of various types of organic or inorganic substances (22). Moreover, specific chemical reactions can be performed with the surface functional groups (OH groups from bmcite or exposed siHca). [Pg.351]

The same arguments can be applied to other energetically facile interconversions of two potential reactants. For example, many organic molecules undergo rapid proton shifts (tautomerism), and the chemical reactivity of the two isomers may be quite different It is not valid, however, to deduce the ratio of two tautomers on the basis of subsequent reactions that have activation energies greater than that of the tautomerism. Just as in the case of conformational isomerism, the ratio of products formed in subsequent reactions will not be controlled by the position of the facile equilibrium. [Pg.222]

Chemical Reactivity - Reactivity with Water No reaction Reactivity with Common Materials Reacts with organic materials rapidly, generating sufficient heat to cause ignition. Prolonged contact on wood floors can result in a fire hazard Stability During Transport Stable Neutralizing Agents for Acids and Caustics Flood with water and rinse with sodium bicarbonate solution Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.86]

Understanding organic chemistry means knowing not just what happens but also why and how it happens. In this chapter, we ll look some of the basic ways chemists use to describe and account for chemical reactivity, thereby providing a foundation for understanding the specific reactions discussed in subsequent chapters. [Pg.35]

A functional group is a group of atoms within a larger molecule that has a characteristic chemical reactivity. Because functional groups behave in approximately the same way in all molecules where they occur, the chemical reactions of an organic molecule are largely determined by its functional groups. [Pg.100]

What does functional-group polarity mean with respect to chemical reactivity Because unlike charges attract, the fundamental characteristic of all polar organic reactions is that electron-rich sites react with electron-poor sites. Bonds are made when an electron-rich atom shares a pair of electrons with an electron-poor atom, and bonds are broken when one atom leaves with both electrons from the former bond. [Pg.144]

Metabolism is the sum of all chemical reactions in the body. Reactions that break down large molecules into smaller fragments are called catabolism reactions that build up large molecules from small pieces are called anabolism. Although the details of specific biochemical pathways are sometimes complex, all the reactions that occur follow the normal rules of organic chemical reactivity. [Pg.1170]

DSP treatments allow one to separate the field and mesomeric effects of substituents on chemical reactivities and physical properties (electronic and NMR spectra, etc.) of organic compounds. In Section 8.3 we will discuss heterolytic dediazoniation of substituted benzenediazonium ions. For this series of reactions the classical Hammett equation completely fails to give useful results (see Fig. 8-1), but the DSP treatment yields a good and mechanistically very meaningful correlation. [Pg.151]

Carbon blacks are the most widely used fillers for elastomers, especially vulcanised natural rubber. They cause an improvement in stiffness, they increase the tensile strength, and they can also enhance the wear resistance. Other particulate fillers of an inorganic nature, such as metal oxides, carbonates, and silicates, generally do not prove to be nearly so effective as carbon black. This filler, which comes in various grades, is prepared by heat treatment of some sort of organic material, and comes in very small particle sizes, i.e. from 15 to 100 nm. These particles retain some chemical reactivity, and function in part by chemical reaction with the rubber molecules. They thus contribute to the crosslinking of the final material. [Pg.114]

For a monograph, see Harris, J.M. McManus, S.P. Nucleophilicity American Chemical Society Washington, 1987. For reviews, see Klumpp, G.W. Reactivity in Organic Chemistry Wiley NY, 1982, pp. 145, 181 Hudson, R.F. in Klopman Chemical Reactivity and Reaction Paths Wiley NY, 1974, p. 167. [Pg.597]

Ultrasound can thus be used to enhance kinetics, flow, and mass and heat transfer. The overall results are that organic synthetic reactions show increased rate (sometimes even from hours to minutes, up to 25 times faster), and/or increased yield (tens of percentages, sometimes even starting from 0% yield in nonsonicated conditions). In multiphase systems, gas-liquid and solid-liquid mass transfer has been observed to increase by 5- and 20-fold, respectively [35]. Membrane fluxes have been enhanced by up to a factor of 8 [56]. Despite these results, use of acoustics, and ultrasound in particular, in chemical industry is mainly limited to the fields of cleaning and decontamination [55]. One of the main barriers to industrial application of sonochemical processes is control and scale-up of ultrasound concepts into operable processes. Therefore, a better understanding is required of the relation between a cavitation coUapse and chemical reactivity, as weU as a better understanding and reproducibility of the influence of various design and operational parameters on the cavitation process. Also, rehable mathematical models and scale-up procedures need to be developed [35, 54, 55]. [Pg.298]

Because the breadth of chemical behavior can be bewildering in its complexity, chemists search for general ways to organize chemical reactivity patterns. Two familiar patterns are Br< )nsted acid-base (proton transfer) and oxidation-reduction (electron transfer) reactions. A related pattern of reactivity can be viewed as the donation of a pair of electrons to form a new bond. One example is the reaction between gaseous ammonia and trimethyl boron, in which the ammonia molecule uses its nonbonding pair of electrons to form a bond between nitrogen and boron ... [Pg.1499]

The frontier-electron density was used for discussing the reactivity within a molecule, while the superdelocalizability was employed in comparing the reactivity of different molecules 44>. Afterwards, the applicability of the frontier-electron theory was extended to saturated compounds 50>. The new theoretical quantity "delocalizability was introduced for discussing the reactivity of saturated molecules 60>. These indices satisfactorily reflected experimental results of various chemical reactions. In addition to this, the conspicuous behavior of HO and LU in determining the steric course of organic reactions was disclosed 44.51). [Pg.12]


See other pages where Organic reactions, chemical reactivity is mentioned: [Pg.137]    [Pg.198]    [Pg.259]    [Pg.423]    [Pg.41]    [Pg.69]    [Pg.46]    [Pg.203]    [Pg.310]    [Pg.351]    [Pg.374]    [Pg.315]    [Pg.586]    [Pg.614]    [Pg.270]    [Pg.32]    [Pg.143]    [Pg.1157]    [Pg.185]    [Pg.272]    [Pg.458]    [Pg.653]    [Pg.50]    [Pg.226]    [Pg.31]    [Pg.200]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Chemical reaction reactivity

Reactivation reaction

Reactive Chemical Reactions

Reactivity reaction

© 2024 chempedia.info