Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic phases molecule

The first step in designing a precursor synthesis is to pick precursor molecules that, when combined in organic solvents, yield the bulk crystalline solid. For metals, a usual approach is to react metal salts with reducing agents to produce bulk metals. The main challenge is to find appropriate metal salts that are soluble in an organic phase. [Pg.2901]

Soap is one example of a broader class of materials known as surface-active agents, or surfactants (qv). Surfactant molecules contain both a hydrophilic or water-liking portion and a separate hydrophobic or water-repelling portion. The hydrophilic portion of a soap molecule is the carboxylate head group and the hydrophobic portion is the aUphatic chain. This class of materials is simultaneously soluble in both aqueous and organic phases or preferential aggregate at air—water interfaces. It is this special chemical stmcture that leads to the abiUty of surfactants to clean dirt and oil from surfaces and produce lather. [Pg.149]

Whether AH for a projected reaction is based on bond-energy data, tabulated thermochemical data, or MO computations, there remain some fundamental problems which prevent reaching a final conclusion about a reaction s feasibility. In the first place, most reactions of interest occur in solution, and the enthalpy, entropy, and fiee energy associated with any reaction depend strongly on the solvent medium. There is only a limited amount of tabulated thermochemical data that are directly suitable for treatment of reactions in organic solvents. Thermodynamic data usually pertain to the pure compound. MO calculations usually refer to the isolated (gas phase) molecule. Estimates of solvation effects must be made in order to apply either experimental or computational data to reactions occurring in solution. [Pg.191]

In Pedersen s early experiments, the relative binding of cations by crown ethers was assessed by extraction of alkali metal picrates into an organic phase. In these experiments, the crown ether served to draw into the organic phase a colored molecule which was ordinarily insoluble in this medium. An extension and elaboration of this notion has been developed by Dix and Vdgtle and Nakamura, Takagi, and Ueno In efforts by both of these groups, crown ether molecules were appended to chromophoric or colored residues. Ion-selective extraction and interaction with the crown and/or chromophore could produce changes in the absorption spectrum. Examples of molecules so constructed are illustrated below as 7 7 and 18 from refs. 32 and 131, respectively. [Pg.166]

Several components of the organic phase contribute greatly to the character of the final product. The pore size of the gel is chiefly determined by the amount and type of the nonsolvent used. Dodecane, dodecanol, isoamyl alcohol, and odorless paint thinner have all been used successfully as nonsolvents for the polymerization of a GPC/SEC gel. Surfactants are also very important because they balance the surface tension and interfacial tension of the monomer droplets. They allow the initiator molecules to diffuse in and out of the droplets. For this reason a small amount of surfactant is crucial. Normally the amount of surfactant in the formula should be from 0.1 to 1.0 weight percent of the monomers, as large amounts tend to emulsify and produce particles less than 1 yam in size. [Pg.164]

Addition of a chiral carrier can improve the enantioselective transport through the membrane by preferentially forming a complex with one enantiomer. Typically, chiral selectors such as cyclodextrins (e.g. (4)) and crown ethers (e.g. (5) [21]) are applied. Due to the apolar character of the inner surface and the hydrophilic external surface of cyclodextrins, these molecules are able to transport apolar compounds through an aqueous phase to an organic phase, whereas the opposite mechanism is valid for crown ethers. [Pg.131]

The theory and development of a solvent-extraction scheme for polynuclear aromatic hydrocarbons (PAHs) is described. The use of y-cyclodextrin (CDx) as an aqueous phase modifier makes this scheme unique since it allows for the extraction of PAHs from ether to the aqueous phase. Generally, the extraction of PAHS into water is not feasible due to the low solubility of these compounds in aqueous media. Water-soluble cyclodextrins, which act as hosts in the formation of inclusion complexes, promote this type of extraction by partitioning PAHs into the aqueous phase through the formation of complexes. The stereoselective nature of CDx inclusion-complex formation enhances the separation of different sized PAH molecules present in a mixture. For example, perylene is extracted into the aqueous phase from an organic phase anthracene-perylene mixture in the presence of CDx modifier. Extraction results for a variety of PAHs are presented, and the potential of this method for separation of more complex mixtures is discussed. [Pg.167]

At infinite dilution, 1-pentanol monomers distribute between AOT-reversed micelles and the continuous organic phase, whereas at finite alcohol concentration, given the ability of alcohol to self-assemble in the apolar organic solvent, a coexistence between reversed micelles (solubilizing 1-pentanol) and alcoholic aggregates (incorporating AOT molecules) is realized [25],... [Pg.476]

The pyrene molecule is transferred by irradiation to its cation radical [29]. This reacts at the oil/water interface by nucleophilic attack from the cyanide ion. Typically, the cyanated product remains in the organic phase. [Pg.477]

It was assumed for a long time that molecules can only cross a membrane in their neutral form. This dogma, based on the pH-partition theory, has been challenged [42, 43]. Using cyclic voltammetry it was demonstrated that compounds in their ionized form pass into organic phases and might well cross membranes in this ionized form [44]. [Pg.32]

These are more general, and they can perform log D calculation at any pH and ionic strength. The distribution coefficient for monoprotic base given by Eq. (2) can be simplified to Eq. (3) assuming that only the neutral form of a molecule will partition into the organic phase and thus D is zero. [Pg.425]

At the end of the reaction, hydroperoxide can be easily recovered in the aqueous phase (98-99%) after its separation from the organic phase and precipitation of the enzymes. The hydroperoxides obtained are highly reactive molecules [109]. They are intermediate compounds in the lipoxygenase pathway in plants, precursors for the synthesis of hydroxy-fatty acids (i.e., ( + )-coriolic acid [38,110], and regulators of the prostaglandins biosynthesis [111-113]. [Pg.579]

Lipophilicity is a molecular property expressing the relative affinity of solutes for an aqueous phase and an organic, water-immiscible solvent. As such, lipophilicity encodes most of the intermolecular forces that can take place between a solute and a solvent, and represents the affinity of a molecule for a lipophilic environment. This parameter is commonly measured by its distribution behavior in a biphasic system, described by the partition coefficient of the species X, P. Thermodynamically, is defined as a constant relating the activity of a solute in two immiscible phases at equilibrium [111,112]. By convention, P is given with the organic phase as numerator, so that a positive value for log P reflects a preference for the lipid phase ... [Pg.730]

As illustrated in Fig. 5, large errors on logP are produced when approximated by Eq. (14). Indeed, in the pH region where the ionized species dominate, the proportion of neutral molecules in the aqueous phase becomes rapidly negligible. The ions are then liable to partition into the organic phase provided they form an ion pair with an electrolyte present in the aqueous phase or a species of equal charge crosses the interface in the opposite direction in order to maintain electroneutrality. [Pg.735]

The given structure shows two molecules of TTA to have reacted with a cobalt ion to form the cobalt-TTA complex, in which the cobalt atom forms a valence bond solid lines) with one, and a coordinate bond (broken lines) with the other, oxygen atom of each TTA molecule. Thus, in the cobalt-TTA complex there is a six-membered ring formed by each TTA molecule with the cobalt atom. Metal chelate complexes of this type have good stability, they are nonpolar and soluble in the organic phase. The usefulness of the chelating extractants in solvent extraction is therefore obvious. [Pg.514]


See other pages where Organic phases molecule is mentioned: [Pg.97]    [Pg.97]    [Pg.2902]    [Pg.186]    [Pg.44]    [Pg.403]    [Pg.206]    [Pg.41]    [Pg.12]    [Pg.18]    [Pg.37]    [Pg.339]    [Pg.164]    [Pg.170]    [Pg.170]    [Pg.174]    [Pg.174]    [Pg.213]    [Pg.115]    [Pg.120]    [Pg.297]    [Pg.22]    [Pg.55]    [Pg.394]    [Pg.464]    [Pg.480]    [Pg.480]    [Pg.481]    [Pg.541]    [Pg.543]    [Pg.632]    [Pg.193]    [Pg.512]    [Pg.46]    [Pg.104]    [Pg.116]   
See also in sourсe #XX -- [ Pg.21 , Pg.22 , Pg.23 ]




SEARCH



Molecules organization

Organic phase

Organic phases phase

Phase molecules

Small Organic Molecules on Solid Phase Target Selection and Solution Studies

Small-molecule compounds solid-phase organic synthesis

Solid-Phase Synthesis Small Organic Molecules

© 2024 chempedia.info