Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic liquid chromatography

The development of micellar liquid chromatography and accumulation of numerous experimental data have given rise to the theory of chromatographic retention and optimization methods of mobile phase composition. This task has had some problems because the presence of micelles in mobile phase and its modification by organic solvent provides a great variety of solutes interactions. [Pg.45]

Mass-action model of surfactant micelle formation was used for development of the conceptual retention model in micellar liquid chromatography. The retention model is based upon the analysis of changing of the sorbat microenvironment in going from mobile phase (micellar surfactant solution, containing organic solvent-modifier) to stationary phase (the surfactant covered surface of the alkyl bonded silica gel) according to equation ... [Pg.81]

VESICULAR AGGREGATES AS NOVEL MEDIA FOR THE ISOLATION OF POLAR AND NON-POLAR ORGANIC COMPOUNDS PRIOR TO LIQUID CHROMATOGRAPHY... [Pg.115]

The method of detecting dimethylterephthalate (DMTP), dibuthyl-phthalate (DBP) and diocthylphthalate (DOP) in aqueous extract is based on their extraction with an organic solvent (hexane) and subsequent concentration using gas-liquid chromatography and an electron-absorbing detector. The detection limit is 0.05 mg/dirf for DMTP and DBP, and 0,01 mg/dm for DOP. [Pg.389]

Chromatography is often used with advantage for the purification of small amounts of complex organic mixtures. Chromatography techniques all rely on the differential distribution of the various components in a mixture between the mobile phase and the stationary phase. The mobile phase can either be a gas or a liquid whereas the stationary phase can either be a solid or a liquid. [Pg.17]

Toxic organic compounds High pressure liquid chromatography ... [Pg.318]

Organic isocyanates in air Lab method with sampling either onto coated glass-fibre filters followed by solvent desorption, or into impingers and analysis using high performance liquid chromatography 25/3... [Pg.362]

Very little in the way of advances has occurred since 1971 in the applications of ultraviolet or infrared spectroscopy to the analysis of fluonnated organic compounds Therefore, only gas-liquid chromatography, liquid chromatography, mass spectrometry, and electron scattering for chemical analysis (ESCA) are discussed The application of nuclear magnetic resonance (NMR) spectroscopy to the analysis of fluonnated organic compounds is the subject of another section of this chapter... [Pg.1029]

The packing material for liquid chromatography is produced from styrene and divinylbenzene dissolved in 50 to 300% by weight of organic solvent to both monomers. The constitution of divinylbenzene in the monomer mixture is not less than 60% by weight. In gel-permeation chromatography, the exclusive molecular weight is not less than 1 X 10 in terms of standard polystyrene (79). [Pg.22]

On-line coupling of normal-phase liquid chromatography (NPLC) and gas chromatography is today a well developed and robust procedure and has been regularly applied to environmental analysis. When a fraction of the NPLC sample is introduced in to the GC unit, a large-volume interface (LVI) is needed but, due to the volatility of the organic solvent used in NPLC, this does not present such a great problem. [Pg.361]

One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

The open-column technique is commonly applied in the case of crude oils (being the least complex geochemical organic mixtures). MPLC, high-pressure liquid chromatography (HPLC), and PTLC are more often applied to more complex samples, especially those dominated by more polar compounds, such as hydrothermal bitumens or samples showing terrestrial organic matter input, such as extracts or pyroly-sates of coals of various ranks. [Pg.372]

Radke et al. [28] described an automated medium-pressure liquid chromatograph, now commonly called the Kohnen-Willsch instrument. At present, the method is widely used to isolate different fractions of soluble organic matter (for instance, as described in Reference 29 to Reference 31). A combination of normal phase and reversed-phase liquid chromatography has been used by Garrigues et al. [32] to discriminate between different aromatic ring systems and degrees of methylamine in order to characterize thermal maturity of organic matter. [Pg.372]

Today, lipophilicity can be determined in many systems that are classified by the characteristics of the nonaqueous phase. When the second phase is an organic solvent (e.g. n-octanol), the system is isotropic, when the second phase is a suspension (e.g. liposomes), it is anisotropic, and when the second phase is a stationary phase in liquid chromatography, it is an anisotropic chromatographic system [6]. Here, we discuss the main aspects of isotropic and anisotropic lipophilicity and their biological relevance the chromatographic approaches are investigated in the following chapter by Martel et al. [Pg.322]


See other pages where Organic liquid chromatography is mentioned: [Pg.610]    [Pg.55]    [Pg.107]    [Pg.150]    [Pg.147]    [Pg.150]    [Pg.246]    [Pg.391]    [Pg.65]    [Pg.116]    [Pg.157]    [Pg.390]    [Pg.24]    [Pg.66]    [Pg.304]    [Pg.1029]    [Pg.1030]    [Pg.1031]    [Pg.19]    [Pg.4]    [Pg.123]    [Pg.432]    [Pg.136]    [Pg.603]    [Pg.1028]    [Pg.493]    [Pg.38]    [Pg.72]    [Pg.225]    [Pg.206]    [Pg.60]    [Pg.102]    [Pg.169]    [Pg.239]    [Pg.138]    [Pg.322]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Organic liquids

© 2024 chempedia.info