Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oleic acid emulsion

It is important to point out that although the caprylic acid/oleic acid emulsion demonstrated small, but measurable, antimicrobial activity in the liquid phase (Baker Suspension Test), and the Kirby-Bauer Plate test showed marginal antimicrobial... [Pg.102]

Sodium caseinate + glycerol + oleic acid (emulsion)... [Pg.817]

It is quite clear, first of all, that since emulsions present a large interfacial area, any reduction in interfacial tension must reduce the driving force toward coalescence and should promote stability. We have here, then, a simple thermodynamic basis for the role of emulsifying agents. Harkins [17] mentions, as an example, the case of the system paraffin oil-water. With pure liquids, the inter-facial tension was 41 dyn/cm, and this was reduced to 31 dyn/cm on making the aqueous phase 0.00 IM in oleic acid, under which conditions a reasonably stable emulsion could be formed. On neutralization by 0.001 M sodium hydroxide, the interfacial tension fell to 7.2 dyn/cm, and if also made O.OOIM in sodium chloride, it became less than 0.01 dyn/cm. With olive oil in place of the paraffin oil, the final interfacial tension was 0.002 dyn/cm. These last systems emulsified spontaneously—that is, on combining the oil and water phases, no agitation was needed for emulsification to occur. [Pg.504]

Preparation of Emulsions. An emulsion is a system ia which one Hquid is coUoidaHy dispersed ia another (see Emulsions). The general method for preparing an oil-ia-water emulsion is to combine the oil with a compatible fatty acid, such as an oleic, stearic, or rosia acid, and separately mix a proportionate quantity of an alkah, such as potassium hydroxide, with the water. The alkah solution should then be rapidly stirred to develop as much shear as possible while the oil phase is added. Use of a homogenizer to force the resulting emulsion through a fine orifice under pressure further reduces its oil particle size. Liquid oleic acid is a convenient fatty acid to use ia emulsions, as it is readily miscible with most oils. [Pg.258]

Olefinketon, n, olefinic ketone, olefin ketone, Olein-saure,/, oleic acid, -saureseife, -seife,/. olein soap, red-oil soap, -schmdlze,/, (Tea> tiles) olein softener, olein emulsion, olen, v.t. oil lubricate, grease. [Pg.326]

Inverse emulsification A solution of the polymer within a volatile, water-immiscible organic solvent (or mixture of solvents) or a polymer melt is compounded with a long-chain fatty acid (e.g., oleic acid) using conventional rubbermixing equipment and mixed slowly with a dilute aqueous phase to give a W/O emulsion,... [Pg.274]

The bulk flotation can be accomplished with the addition of small doses of oleic acid plus oxidized emulsion of fuel oil. The fuel oil is treated with 10% solution of NaOH at a temperature of 60-80°C for 1 h. The following method was used for rutile-zircon separation the concentrate was thickened, followed by heat conditioning to 60°C. After the heat treatment, the zircon was floated without the addition of collector. The zirconium tailing is the rutile concentrate. The zircon concentrate was thickened, followed by gravity cleaning. In some cases, the heat-treated pulp is washed before zircon flotation. The following metallurgical results were obtained ... [Pg.197]

Infusion of fat into the ileum has been shown to cause a lengthening of the SITT—a phenomenon known as the ileal brake (27,28). However, the effect is generally modest (causing a delay of 30-60 min) and attempts to exploit this mechanism in drug delivery have had limited success. Dobson et al. (29,30) studied the effect of co-administered oleic acid on the small intestinal transit of non-disintegrating tablets. They showed a delay in SITT in over half of all cases, and a doubling of SITT in some instances, but in the other cases SITT was either unaffected or even reduced. Lin et al. (31) have also showed slowed GI transit in patients with chronic diarrhea by administration of emulsions containing 0, 1.6, and 3.2 g of oleic acid. Small intestinal transit in normal subjects was measured at 102 11 min, while the transit times in the patients treated with the three emulsions were, respectively, 29 3, 57 5 and 83 5 min. [Pg.107]

A) Elaboration of PLLA-based superparamagnetic nanoparticles Characterization, magnetic behavior study and in vitro relaxivity evaluation Abstract. Oleic acid-coated magnetite has been encapsulated in biocompatible magnetic nanoparticles (MNP) by a simple emulsion evaporation method. [Pg.128]

Addition of dampproofers based on caprylic, capric or stearic acids, stearates or wax emulsions do not have any effect on the setting characteristics of hydration products of Portland cement. However, the unsaturated fatty acid salts, such as oleates, although not affecting the tricalcium silicate hydration, have a marked effect on the ettringite and monosulfate reaction [12] and this is illustrated in the isothermal calorimetry results in Fig. 4.4. It is possible that a calcium oleoaluminate hydrate complex is formed involving the double bond of the oleic acid. [Pg.234]

The LPL catalytic assay measures the hydrolysis of a [14C[- or [3H]-triolein emulsion producing the 14C- or 3H -labeled free oleic acid [6]. The 14C- or 3H-labeled oleic acid is isolated by a selective extraction procedure and its radioactivity is determined by liquid scintillation counting [40]. Lipase activity is calculated as nanomoles of oleic acid released per minute per milliliter of postheparin plasma [41]. [Pg.500]

In the group with positive spreading coefficients (e.g., toluene-in-water and oleic acid-in-water emulsions), the values ofkj a in both stirred tanks and bubble columns decrease upon the addition of a very small amount of oil, and then increase with increasing oil fraction. In such systems, the oils tend to spread over the gas-liquid interface as thin films, providing additional mass transfer resistance and consequently lower k values. Any increase in value upon the further addition of oils could be explained by an increased specific interfacial area a due to a lowered surface tension and consequent smaller bubble sizes. [Pg.201]

Effect of Bulk pH on Behavior and Solubility of Oleic Acid in Bile Salt Solution. Figure 2 shows the effect of bulk pH on the behavior and solubility of oleic acid in 0.15M buffer (above) and in 4 mM sodium glycodeoxycholate (below). In buffer, oleic acid has an extremely low solubility, and the excess, below pH 6.8, is present as an emulsion. In micellar bile salt solution, the oleic acid is solubilized to some extent. Above pH 6.5, its solubility rises markedly, and the excess now forms a dispersed phase which probably consists of droplets of fatty acid emul-... [Pg.64]

Other fatty acids as absorption enhancers have been reported. Ogiso et al. [112] demonstrated that lauric acid (C12) produced the largest increase in permeation rate, penetration coefficient, and partition coefficient of propranolol. Onuki et al. [113] reported that docosa-hexaenoic acid (DHA) has a strong insulin permeability enhancement effect and little toxicity, compared to oleic acid and eicosapentaenoic acid (EPA) using a water-in-oil-in-water (W/O/W) multiple emulsion with no or little mucosal damage. [Pg.161]

Anionic surfactants are negatively charged in an aqueous solution (i.e., -COO-, -OSOj), and widely used because of their cost and performance. Sodium lauryl sulfate, the main component of which is sodium dodecyl sulfate, is highly soluble in water and commonly used to form oil-in-water (O/W) emulsions. Reacting an alkali hydroxide with a fatty acid (e.g., oleic acid) can produce alkali metal soaps (e.g., sodium oleate). Careful attention must be paid to the pH of the dispersion medium and the presence of multivalent metals (see Section 4.2.5). Alkali earth metal soaps (e.g., calcium oleate) produce stable water-in-oil (W/O) emulsions because of their low water solubility and are produced by reacting oleic acid with calcium hydroxide. Triethanolamine stearate produces stable O/W emulsions in situ by reacting triethanolamine in aqueous solution with melted stearic acid at approximately 65°C (e.g., vanishing cream). [Pg.224]

Milk fat globule membrane (MFGM) emulsion was shown to enhance the absorption of epidermal growth factor (EGF) from the intestine, especially to intestinal lymph. The oral bioavailability of propanolol was shown to increase when administered in oleic acid and other lipid media. It is thought that the oleic acid forms an ion-pair with the drag and the entire complex is incorporated into chylomicrons. A further factor in the absorption enhancing effects may be that oleic acid per se stimulates chylomicron production. [Pg.165]


See other pages where Oleic acid emulsion is mentioned: [Pg.103]    [Pg.105]    [Pg.518]    [Pg.103]    [Pg.105]    [Pg.518]    [Pg.521]    [Pg.355]    [Pg.278]    [Pg.603]    [Pg.277]    [Pg.195]    [Pg.210]    [Pg.281]    [Pg.185]    [Pg.194]    [Pg.601]    [Pg.615]    [Pg.114]    [Pg.114]    [Pg.67]    [Pg.68]    [Pg.382]    [Pg.331]    [Pg.235]    [Pg.197]    [Pg.202]    [Pg.618]    [Pg.102]    [Pg.104]    [Pg.106]    [Pg.9]    [Pg.126]    [Pg.227]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Oleic

Oleics

© 2024 chempedia.info