Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin cracking process

Dicyclopentadiene is the Diels-Alder reaction dimer of cyclopentadiene. It is the thermodynamically stable form of cyclopentadiene at room temperature, and is also a byproduct in the olefin cracking process. Industrially, it is isolated by distillation, and currently is readily available in North America. [Pg.704]

Olefin cracking has been developed as a process to produce propylene in a highly selective manner from butenes and pentenes. Zeolites used in processes such as UOP s Olefin Cracking Process are often MFI-based in order to avoid coke buildup during the reaction, leading to longer times between catalyst regeneration (Table 12.15). [Pg.377]

Description The ATOFINA/UOP Olefin Cracking Process was jointly developed by Total Petrochemicals (formerly ATOFINA) and UOP to convert low-value C4 to C8 olefins to propylene and ethylene. The process features fixed-bed reactors operating at temperatures between 500°C and 600°C and pressures between 1 and 5 bars gauge. [Pg.182]

Applications The Total Petrochemicals/UOP Olefin Cracking Process(OCP) is used to primarily produce propylene from to Cg olefins supplied by steam crackers, refineries and/or methanol-to-olefins (MTO) plants. [Pg.251]

Oxidic catalysts with acidic properties catalyze many industrial reactions, including the dehydration of alcohols, the hydration of olefins, cracking processes, and olefin polymerization. How does the acidity of such solids arise ... [Pg.170]

Since that time, a major milestone for advanced MTO commercialization was the startup of a semicommercial, fully integrated MTO demonstration unit in Feluy, Belgium, on Total Petrochemicals premises in 2009. The plant has a capacity exceeding 10 tons methanol/day more than 13 times the capacity of the first smaller demo unit built at Hydro in Norway. The process demonstration unit (PDU) includes a complete MTO process with product recovery and purification as well as integration with ATOFINA/UOP olefin cracking process (OCP) to maximize the yields of ethylene and propylene. Following some initial work by Total Petrochemicals (formerly Atofma) in the mid-1990s. Total Petrochemicals and UOP formed a joint-development alliance in late 2000 [3,45]. [Pg.198]

Olefin Feedstock Selection. The selection of feedstock and severity of the cracking process are economic choices, given that the specific plant has flexibiUty to accommodate alternative feedstocks. The feedstock prices are driven primarily by energy markets and secondarily by supply and demand conditions ia the olefins feedstock markets. The prices of iadividual feedstocks vary widely from time to time as shown ia Figure 2, which presents quarterly prices of the various feedstocks ia the United States from 1978 through 1991 ia dollars per metric ton (1000 kg) (4). [Pg.173]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

The feedstock, usuaHy consisting of propylene and butylenes (various isomers of C Hg) from cracking processes, may even consist of selective olefins for dimer, trimer, or tetramer production ... [Pg.207]

Recovering the bitumen is not easy, and the deposits are either strip-mined if they are near the surface, or recovered in situ if they are in deeper beds. The bitumen could be extracted by using hot water and steam and adding some alkali to disperse it. The produced bitumen is a very thick material having a density of approximately 1.05 g/cm. It is then subjected to a cracking process to produce distillate fuels and coke. The distillates are hydrotreated to saturate olefinic components. Table 1-8 is a typical analysis of Athabasca bitumen. ... [Pg.25]

Paraffins are relatively inactive compared to olefins, diolefins, and aromatics. Few chemicals could be obtained from the direct reaction of paraffins with other reagents. However, these compounds are the precursors for olefins through cracking processes. The C -Cg paraffins and cycloparaffms are especially important for the production of aromatics through reforming. This section reviews some of the physical and chemical properties of C1-C4 paraffins. Long-chain paraffins normally present as mixtures with other hydrocarbon types in different petroleum fractions are discussed later in this chapter. [Pg.29]

Chemicals directly based on propane are few, although as mentioned, propane and LPG are important feedstocks for the production of olefins. Chapter 6 discusses a new process recently developed for the dehydrogenation of propane to propylene for petrochemical use. Propylene has always been obtained as a coproduct with ethylene from steam cracking processes. Chapter 6 also discusses the production of aromatics from LPG through the Cyclar process. ... [Pg.31]

Deep catalytic cracking (DCC) is a catalytic cracking process which selectively cracks a wide variety of feedstocks into light olefins. The reactor and the regenerator systems are similar to FCC. However, innovation in the catalyst development, severity, and process variable selection enables DCC to produce more olefins than FCC. In this mode of operation, propylene plus ethylene yields could reach over 25%. In addition, a high yield of amylenes (C5 olefins) is possible. Figure 3-7 shows the DCC process and Table 3-10 compares olefins produced from DCC and FCC processes. ... [Pg.77]

The most important olefins and diolefins used to manufacture petrochemicals are ethylene, propylene, butylenes, and hutadiene. Butadiene, a conjugated diolefin, is normally coproduced with C2-C4 olefins from different cracking processes. Separation of these olefins from catalytic and thermal cracking gas streams could he achieved using physical and chemical separation methods. However, the petrochemical demand for olefins is much greater than the amounts these operations produce. Most olefins and hutadienes are produced hy steam cracking hydrocarbons. [Pg.91]

While most isoprene produced today comes from the dehydrogenation of C5 olefin fractions from cracking processes, several schemes are used for its manufacture via synthetic routes. The following reviews the important approaches for isoprene production. [Pg.105]

A major use of propane recovered from natural gas is the production of light olefins by steam cracking processes. However, more chemicals can be obtained directly from propane by reaction with other reagents than from ethane. This may be attributed to the relatively higher reactivity of propane than ethane due to presence of two secondary hydrogens, which are easily substituted. [Pg.171]

The three isomers constituting n-hutenes are 1-hutene, cis-2-hutene, and trans-2-hutene. This gas mixture is usually obtained from the olefinic C4 fraction of catalytic cracking and steam cracking processes after separation of isobutene (Chapter 2). The mixture of isomers may be used directly for reactions that are common for the three isomers and produce the same intermediates and hence the same products. Alternatively, the mixture may be separated into two streams, one constituted of 1-butene and the other of cis-and trans-2-butene mixture. Each stream produces specific chemicals. Approximately 70% of 1-butene is used as a comonomer with ethylene to produce linear low-density polyethylene (LLDPE). Another use of 1-butene is for the synthesis of butylene oxide. The rest is used with the 2-butenes to produce other chemicals. n-Butene could also be isomerized to isobutene. ... [Pg.238]

Isobutylene (CH2=C(CH3)2) is a reactive C4 olefin. Until recently, almost all isobutylene was obtained as a by-product with other C4 hydrocarbons from different cracking processes. It was mainly used to produce alkylates for the gasoline pool. A small portion was used to produce chemicals such as isoprene and diisobutylene. However, increasing demand for oxygenates from isobutylene has called for other sources. [Pg.249]

Crude oil processing is mainly aimed towards the production of fuels, so only a small fraction of the products is used for the synthesis of olefins and aromatics. In Chapter 3, the different crude oil processes are reviewed with special emphasis on those conversion techniques employed for the dual purpose of obtaining fuels as well as olefmic and aromatic base stocks. Included also in this chapter, are the steam cracking processes geared specially for producing olefins and diolefms. [Pg.403]

Table 5 gives typical results of the wax cracking process to surfactant olefins. Compared with the pure a-olefins produced by the oligomerization reactions of ethylene the crack olefins are decreased in quality, especially due to the conjugated diene part (2-4%). Moreover, there are some problems in guaranteeing the wanted amounts of C20-C30 n-alkanes. Therefore in industrially de-... [Pg.10]

Apart from the UOP Pacol process, today s only other meaningful economic process is the Shell higher olefin process (SHOP) in which /z-olefins are produced by ethylene oligomerization. Until 1992 Hiils AG used its own technology to produce -60,000 t/year of /z-olefins by the chlorination of /z-paraffins (from Molex plant) and subsequent dehydrochlorination [13]. In the past, the wax cracking process (Shell, Chevron) played a certain role. In the Pacol and Hiils processes, olefins are obtained as diluted solutions in paraffin (Pacol to max. 20%, Hiils about 30%) without further processing these are then used for alkylation. In contrast, the SHOP process produces pure olefins. [Pg.44]


See other pages where Olefin cracking process is mentioned: [Pg.93]    [Pg.199]    [Pg.2465]    [Pg.93]    [Pg.253]    [Pg.286]    [Pg.198]    [Pg.93]    [Pg.199]    [Pg.2465]    [Pg.93]    [Pg.253]    [Pg.286]    [Pg.198]    [Pg.171]    [Pg.172]    [Pg.199]    [Pg.183]    [Pg.126]    [Pg.128]    [Pg.181]    [Pg.365]    [Pg.443]    [Pg.2079]    [Pg.2099]    [Pg.220]    [Pg.947]    [Pg.985]    [Pg.95]    [Pg.10]    [Pg.31]    [Pg.93]   
See also in sourсe #XX -- [ Pg.285 , Pg.286 ]




SEARCH



Crack process

Cracked olefins

Cracking olefin

Cracking processes

© 2024 chempedia.info