Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of propargylic alcohols

Butyllithium in a mixture of hexane and diethyl ether or THE can presumably also be used for the dilithiation of propargyl alcohol. [Pg.58]

To a vigorously stirred suspension of 4 mol of lithium amide (see II, Exp. II) in 2.5 1 of liquid ammonia were added in 25 min 2 mol of propargyl alcohol (commercially available, purified before use by distillation at 100-120 mm). The suspension became very thin. Subsequently, the dropping funnel was combined with a gas inlet tube reaching about 1 cm beneath the surface of the ammonia. The vent on the splashing tube was removed. Methyl iodide (2 mol) was added to the vigorous-... [Pg.76]

To a vigorously stirred suspension of 2 mol of lithium amide in 2 1 of liquid atimonia (see II, Exp. 11) was added in 15 min 1 mol of propargyl alcohol (commercial product, distilled in a partial vacuum before use). Subsequently, 1 mol of butyl bromide was added dropwise in 75 min. After an additional 1.5 h, stirring was stopped and the ammonia was allovied to evaporate. To the solid residue were added 500 ml of ice-water. After the solid mass had dissolved, six extractions with diethyl ether were performed. The (unwashed) combined extracts were dried over magnesium sulfate and then concentrated in a water-pump vacuum. Distillation of the residue through a 40-cm Vigreux column afforded 2-heptyn-l-ol, b.p. [Pg.77]

A well known, synthetically useful reaction of propargylic alcohols is their... [Pg.155]

Note 1. The sulfinate of propargyl alcohol did not rearrange upon heating at 130-140°C in xylene. [Pg.199]

To a mixture of 100 ml of dry dichloromethane, 0.10 mol of propargyl alcohol and 0.11 mol of triethylamine was added a solution of 0.05 mol of Ph2PCl in 75 ml of dichloromethane in 3 min between -80 and -90°C. The cooling bath was removed, and when the temperature had reached 10°C, the reaction mixture was poured into a solution of 2.5 ml of 362 HCl in 100 ml of water. After vigorous shaking the lower layer was separated and the aqueous layer was extracted twice with 25-ml portions of dichloromethane. The combined solutions were washed twice with water, dried over magnesium sulfate and then concentrated in a water-pump vacuum, giving almost pure allenyl phosphine oxide as a white solid, m.p. 98-100 5, in almost 1002 yield. [Pg.199]

As an application of maleate formation, the carbonylation of silylated 3-butyn-l-ol affords the 7-butyrolactone 539[482], Oxidative carbonylation is possible via mercuration of alkynes and subsequent Lransmetallation with Pd(II) under a CO atmosphere. For example, chloromercuration of propargyl alcohol and treatment with PdCF (1 equiv.) under 1 atm of CO in THF produced the /3-chlorobutenolide 540 in 96% yield[483]. Dimethyl phenylinale-ate is obtained by the reaction of phenylacetylene, CO, PdCU, and HgCl2 in MeOH[484,485]. [Pg.100]

Propargylic (or 2-alkynyl) compounds are derivatives of alkynes. However, Pd-catalyzed reactions of propargylic derivatives, particularly esters and halides, are very different mechanistically from those of simple alkynes, except in a few cases. Therefore, the reactions of propargylic esters and halides are treated in this section separately from those of other alkynes. However, some reactions of propargylic alcohols, which behave similarly to simple alkynes, are treated in Section 6. [Pg.453]

Propargylic alcohols are less reactive and their carbonylation proceeds under severe conditions. The Pd-catalyzed carbonylation of propargyl alcohol in the... [Pg.460]

With two equivalents of an organomagnesium hahde, a Gtignard reagent is formed, capable of use in further syntheses (35,36). Cuprous salts cataly2e oxidative dimerization of propargyl alcohol to 2,4-hexadiyne-l,6-diol [3031-68-3] (37). [Pg.104]

Propargyl alcohol (2-propyn-l-ol) [107-19-7] M 56.1, b 54 /57mm, 113.6 /760mm, d 0.947, n 1.432. Commercial material contains a stabiliser. An aqueous soln of propargyl alcohol can be concentrated by azeotropic distn with butanol or butyl acetate. Dried with K2CO3 and distd under reduced pressure, in the presence of about 1% succinic acid, through a glass helices-packed column. [Pg.339]

The procedure described is that of Wille and Saffer. Propiolaldehyde has also been prepared by the oxidation of propargyl alcohol using ammonium dichromate or manganese dioxide in 10% sulfuric acid. Propiolaldehyde has also been prepared by warming the dimethyl or diethyl acetal with dilute sulfuric acid. ... [Pg.68]

The alkynylation of estrone methyl ether with the lithium, sodium and potassium derivatives of propargyl alcohol, 3-butyn-l-ol, and propargyl aldehyde diethyl acetal in pyridine and dioxane has been studied by Miller. Every combination of alkali metal and alkyne tried, but one, gives the 17a-alkylated products (65a), (65c) and (65d). The exception is alkynylation with the potassium derivative of propargyl aldehyde diethyl acetal in pyridine at room temperature, which produces a mixture of epimeric 17-(3, 3 -diethoxy-T-propynyl) derivatives. The rate of alkynylation of estrone methyl ether depends on the structure of the alkyne and proceeds in the order propar-gylaldehyde diethyl acetal > 3-butyn-l-ol > propargyl alcohol. The reactivity of the alkali metal salts is in the order potassium > sodium > lithium. [Pg.68]

Compounds with triple bonds, i.e. acetylenic compounds, continue to receive attention. Patents have been filed for mixtures of propargyl alcohol with, for example, cellosolve + a phenol formaldehyde resin + tar bases heterocyclic nitrogen compounds + acetylenic + dialkylthiourea or a quaternary + antimony oxide . [Pg.800]

R = Me, R = H) with cyclohexenol in the presence of F ion followed by NaOCl oxidation gave the tricyclic ether 61 in 65% yield (Scheme 9) [29]. The use of propargyl alcohol and propargyl thiol led, via the acetylenic oximes, to fused tetrahydrofuranoisoxazoles 62 a and 62 b, and tetrahydrothiopheno[3,4-c]isoxa-zole 62 c, respectively. Reaction of l-butyn-4-ol with 0-trimethylsilyl a-bro-moaldoxime 52e (R = R = Me) led to the tetrahydropyranoisoxazole 62 d. [Pg.10]

The stereochemistry of the first step was ascertained by an X-ray analysis [8] of an isolated oxazaphospholidine 3 (R = Ph). The overall sequence from oxi-rane to aziridine takes place with an excellent retention of chiral integrity. As the stereochemistry of the oxirane esters is determined by the chiral inductor during the Sharpless epoxidation, both enantiomers of aziridine esters can be readily obtained by choosing the desired antipodal tartrate inductor during the epoxidation reaction. It is relevant to note that the required starting allylic alcohols are conveniently prepared by chain elongation of propargyl alcohol as a C3 synthon followed by an appropriate reduction of the triple bond, e. g., with lithium aluminum hydride [6b]. [Pg.95]

Friedel-Crafts reaction remains unexplored, possibly due to the difficulty of the cycloalkyne formation. A mild, versatile, and efficient method for the one-step synthesis of substituted dihydro- and tetrahydroisoquinolines has been developed by the FeCl3-6H20-catalyzed intramolecular allenylation/cyclization reaction of benzylamino-substituted propargylic alcohols, representing the first example of the intramolecular Friedel-Crafts reaction of propargylic alcohols (Scheme 8) [24, 25]. FeCls, InCls, and Yb(OTf)3 also exhibit good catalytic activity for the reaction. [Pg.7]

Tao B, Ruble JC, Hole DA, Fu GC (1999) Nonenzymatic kinetic resolution of propargylic alcohols by a planar-chiral DMAP Derivative crystallographic characterization of the acylated catalyst. J Am Chem Soc 121 5091-5092... [Pg.176]

The homogeneous, anaerobic, oxidation of propargyl alcohol by cupric acetate in buffered pyridine solution is an example of a general reaction... [Pg.428]

The methanolic cupric bromide oxidation of propargyl alcohol to trans-BrCH-CBrCH20H (30%) and Br2C=CBrCH20H (18%) and, under other reaction conditions, Br2C-CBr-CH20H (93 %) follows simple second-order kinetics with a rate coefficient of 1.5 x 10 l.mole . sec at 64 °C. A mechanism of ligand-transfer in a 7t-complex is proposed. ... [Pg.429]

This study demonstrates that the addition of the 2-diazopropane with the triple bond of propargyl alcohols is regioselective, and affords new antibacterial 3H-pyrazoles. The photochemical reaction of these 3H-pyrazoles selectively leads to a- and 6-hydroxy cyclopropenes. The overall transformation constitutes a simple straightforward route to substituted cyclopropenyl alcohols without initial protection of the propargyl alcohol hydroxyl group. [Pg.148]

Table 2. Silylcarbocyclization of propargyl alcohols and propargyl amines with Rh catalysts . Table 2. Silylcarbocyclization of propargyl alcohols and propargyl amines with Rh catalysts .
As will be seen on p.256 some accidents of propargyl alcohol can be explained by its easy decomposition although other explanations are given. [Pg.255]

An aqueous solution of 33% of propargyl alcohol gives rise to an unexpected detonation in a sulphuric medium (acid at 56%). Indeed, this reaction is thought to be safe. It was thought that this accident was either linked to difficulties in cooling or the presence of a heavy metal salt (see next reaction). [Pg.256]

Quaternary ammonium iodides were tested alone and in combination with propargyl alcohol with several steels in 15% HCl. The quaternary ammonium iodides showed superior inhibitor performance to that of propargyl alcohol (propargyl = —CH2-C=CH) at identical dosage levels. Mixtures of propargyl alcohol and quaternary anunonium iodide showed a synergistic effect [1330], as did formic acid [246] and thiols [1808]. [Pg.92]

Instead of propargyl alcohol, propargyl ether has been proposed to be used as a corrosion inhibitor. Propargyl alcohol is added to olefins to form the corresponding ether [936]. [Pg.95]

In 2002, Braga el al. employed a chiral C2-symmetric oxazolidine disulfide as a ligand for the enantioselective synthesis of propargylic alcohols by direct addition of alkynes to aldehydes (Scheme 3.64). Good yields but moderate enantioselectivities (<58% ee) were obtained for the enantioselective alkyny-lation of aldehydes in the presence of ZnEt2. [Pg.144]

In addition to the reactions discussed above, there are still other alkyne reactions carried out in aqueous media. Examples include the Pseudomonas cepacia lipase-catalyzed hydrolysis of propargylic acetate in an acetone-water solvent system,137 the ruthenium-catalyzed cycloisomerization-oxidation of propargyl alcohols in DMF-water,138 an intramolecular allylindination of terminal alkyne in THF-water,139 and alkyne polymerization catalyzed by late-transition metals.140... [Pg.140]

Balme and coworkers reported on a procedure for the preparation of highly functionalized furans of type 2-940 (Scheme 2.210) [480]. Their approach is based on a nucleophilic Michael addition of propargyl alcohols 2-937 to alkylidene or aryl-idenemalonates 2-938, followed by a palladium-catalyzed cydization via the carban-ion 2-939. The reactions with propargyl alcohol led to the formation of only one di-... [Pg.191]

Reaction of propargylic alcohols 229 with alkyl diazoacetates entails competition between O/H insertion and cyclopropenation. [Pg.175]

The use of Zn(OTf)2 with a Ru complex, TpRuPPh3(MeCN)2PF6, proved useful for the cyclization of propargyl alcohols 99 with amides. The reaction proceeded through the intermediate 100 which was also isolated from the reaction mixture when only the Zn catalyst was used. Upon heating with the mixture of the two catalysts, compound 100 was completely converted into the final oxazole 101 <06JOC4951>. [Pg.299]

Air-stable palladium(O) catalyst, [(Cy3P)2Pd(H)(H20)]BF4, catalyses carbonylation of propargylic alcohols to generate dienoic acids and esters (equation 167)286. Since propar-gyl alcohols are obtained from carbonyl compounds by acetyhde addition reactions, this sequence constitutes a three-carbon homologation. a-Allenic alcohols are converted to tt-vinylacrylic acids under similar conditions (equation 168)287. [Pg.456]


See other pages where Of propargylic alcohols is mentioned: [Pg.82]    [Pg.194]    [Pg.203]    [Pg.237]    [Pg.461]    [Pg.462]    [Pg.103]    [Pg.104]    [Pg.83]    [Pg.38]    [Pg.772]    [Pg.1025]    [Pg.455]    [Pg.437]    [Pg.256]    [Pg.580]    [Pg.94]    [Pg.155]   
See also in sourсe #XX -- [ Pg.14 , Pg.473 ]

See also in sourсe #XX -- [ Pg.14 , Pg.473 ]




SEARCH



5.5- Disubstituted 2 -furanones, cyclocarbonylation of terminal propargyl alcohols

Cycloaddition of propargylic alcohols

Enantioselective Synthesis of Propargyl Alcohols as Multifunctional Synthons

Hydration and dehydration reactions of cluster-bound propargyl alcohols

Oxidation, by nitric acid of propargyl alcohol

Oxidative of propargyl alcohols

Propargyl alcohol

Propargylation of Aromatic Compounds with Propargylic Alcohols

Propargylation of Heteroaromatic and Aromatic Compounds with Propargylic Alcohols

Propargylic alcohols

Pyrazoles by a Consecutive 3CR of (Hetero)aryl Halides, Propargyl Alcohols, and Hydrazines

Reduction of propargylic alcohols

Synthesis of Cyclic Carbonates from Propargylic Alcohols

Synthesis of Enantiopure Propargylic Alcohols

Synthesis of Propargylic Alcohols

Transformation of Propargyl Alcohols

© 2024 chempedia.info