Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative cycloisomerization

In addition to the reactions discussed above, there are still other alkyne reactions carried out in aqueous media. Examples include the Pseudomonas cepacia lipase-catalyzed hydrolysis of propargylic acetate in an acetone-water solvent system,137 the ruthenium-catalyzed cycloisomerization-oxidation of propargyl alcohols in DMF-water,138 an intramolecular allylindination of terminal alkyne in THF-water,139 and alkyne polymerization catalyzed by late-transition metals.140... [Pg.140]

B.M. Trost, Y.H. Rhee, Ruthenium-catalyzed cycloisomerization-oxidation of homopropargyl alcohols. A new access to y-but)frolactones, J. Am. Chem. Soc. 121 (1999) 11680-11683. [Pg.286]

Rather than the expected [3 + 2] cycloaddition, a novel ene-like cycloisomerization occurs on deprotonation of allyltrimethylsilyl-oxime compounds, when the j3-sp2 carbon atom of the allyltrimethylsilyl moiety is tethered to the oxime unit. The resulting nitrile oxide group serves as an enophile, and the final cyclized product still has two functional groups suitable for further manipulations. Thus, ene-like cycloisomerization of allyltrimethylsilyl-oxime 375 with NaOCl in CH2CI2 gives 82% of cyclized product 376 (423). See also Reference 424. [Pg.79]

The [4+ 4]-homolog of the [4 + 2]-Alder-ene reaction (Equation (48)) is thermally forbidden. However, in the presence of iron(m) 2,4-pentanedioate (Fe(acac)3) and 2,2 -bipyridine (bipy) ligand, Takacs57 found that triene 77 cyclizes to form cyclopentane 78 (Equation (49)), constituting an unprecedented formal [4 + 4]-ene cycloisomerization. The proposed mechanism for this transformation involves oxidative cyclization followed by /3-hydride elimination and reductive elimination to yield the cyclized product (Scheme 18). [Pg.578]

The high-valent metal species required for activation of an alkyne has also been generated by the oxidative addition to an allylic or propargylic system. For example, with an allyl aryl ether as the substrate, this type of reaction achieves a cycloisomerization that occurs through an 0- to C-allyl migration (Equation (92)) 323,324 similarly, (9-propargyl derivatives lead to a mixture of allenyl and propargyl products (Equation (93)).325,326... [Pg.674]

The Diels-Alder reaction outlined above is a typical example of the utilization of axially chiral allenes, accessible through 1,6-addition or other methods, to generate selectively new stereogenic centers. This transfer of chirality is also possible via in-termolecular Diels-Alder reactions of vinylallenes [57], aldol reactions of allenyl eno-lates [19f] and Ireland-Claisen rearrangements of silyl allenylketene acetals [58]. Furthermore, it has been utilized recently in the diastereoselective oxidation of titanium allenyl enolates (formed by deprotonation of /3-allenecarboxylates of type 65 and transmetalation with titanocene dichloride) with dimethyl dioxirane (DMDO) [25, 59] and in subsequent acid- or gold-catalyzed cycloisomerization reactions of a-hydroxyallenes into 2,5-dihydrofurans (cf. Chapter 15) [25, 59, 60],... [Pg.67]

The proposed mechanism of the above cycloisomerizations are depicted in Scheme 11.30. The oxidative coupling of a metal to an enyne yields a bicyclic metaUacyclopentene, which is a common intermediate. The reductive elimination and subsequent retro-[2+2] cycloaddition gave vinylcyclopentene derivatives, while the two patterns of P-elimination and subsequent reductive eUmination gave cychc 1,3- and 1,4-dienes, respectively. The existence of a carbene complex intermediate might explain the isomerization of the olefinic moiety. [Pg.290]

Parker has outlined an elegant, enantioselective synthesis of L-vancosamine derivatives commencing from noncarbohydrate precursors (Scheme 17.38) [116]. This approach features a diastereoselective allenylstannane addition and W(CO)5-catalyzed cycloisomerization to construct the pyranose core. Oxidative cyclization of the C4-carba-mate 128 is performed with 10 mol% Rh2(OAc)4 and proceeds stereospecifically to give the crystalline oxazolidinone 129 (86%). All told, synthesis of this useful L-vancosa-mine glycal equivalent covers seven steps from (S)-(-)-ethyl lactate 127 and is accomplished in 44% overall yield. [Pg.408]

If photochemical apparatus is not available, the cycloisomerization reaction can be conducted using trimethylamine N-oxide to promote oxidative decarbonylation of molybdenum hexacarbonyl in a mixture of EtjN and EtgO, followed by addition of 1-phenyl-3-butyn-1-ol (1). In the submitters hands, this procedure required somewhat higher loading of molybdenum hexacarbonyl, and purification of the 2-phenyl-2,3-dihydrofuran (2) product required silica gel chromatography. [Pg.16]

The molybdenum-catalyzed cyclization procedure works well for a variety of homoprogargylic alcohols to afford the cycloisomeric 2,3-dihydrofuran compounds, as shown in Table I. The transformation was originally discovered with the reagent arising from reaction of molydbenum hexacarbonyl and trimethylamine oxide, but catalyst turnover and product isolation yields are significantly improved with the cunent procedure, which... [Pg.163]

Both oxidative cyclization and cycloisomerization were applied to a variety of substrates, including sugar derivatives, the only restriction to the formation of lactones was the presence of a tertiary alcohol functionality. [Pg.323]

Aminoalkenes, oxidative cyclization, 10, 710-711 Aminoalkoxides, on zinc compounds, 2, 371 a-Aminoalkylallenes, cycloisomerizations, 10, 720 a-Aminoalkylcuprates, preparation, 9, 519-520 -Aminoalkylidynes, diiron carbonyl complexes with cyclopentadienyl ligands, 6, 248 Aminoalkynes, hydroamination, 10, 717 a-Aminoallenes, activation by gold, 9, 574 Amino r]5-amides, in Ru and Os half-sandwich rf3-arenes,... [Pg.54]

As a part of a program directed toward the synthesis of the potent topisomerase I inhibitors, the lamellarins (e.g., 153 and 154), Porco has reported the silver triflate-catalyzed tandem cycloisomerization-azomethine ylide cycloaddition of 155 (Scheme 2.42).75 The postulated mechanism of this intriguing and highly efficient process is shown in Scheme 2.43. Silver-catalyzed addition of the imine nitrogen to the alkyne results, on subsequent deprotonation, in the formation of an azomethine ylide 160. This ylide participates in [3+2] cycloaddition with the alkyne component leading to formation of a dehydropyrrole 161. Finally, oxidation by adventitious oxygen leads to formation of the product 162. [Pg.71]

Shin s group80 also used AgOTf (5 mol%) to catalyze the formation of isoquinoline-IV-oxide structures 56 (Scheme 5.26) from cycloisomerization of 2-alkynylbenzaldox-imes 55. This synthesis is of interest since these structures are usually made by oxidation of the parent nitrogen heterocycles. [Pg.156]

Copper(I) catalysis is very well established to promote intramolecular [2+2] photocycloaddition reactions of l,n-dienes (review [351]). The methodology recently enjoyed a number of applications [352-354], It is assumed that CuOTf, which is commonly applied as the catalyst, coordinates the diene and in this way mediates a preorganization. The Ghosh group recently reported a number of CuOTf-catalyzed photochemical [2+2] cycloaddition reactions, in which an organocopper radical complex was proposed as a cyclization intermediate (which should, however, have a formal Cu(II) oxidation state) (selected references [355-357]). A radical complex must, however, not be invoked, since the process may either proceed by a [2+2] photocycloaddition in the coordination sphere of copper without changing the oxidation state or according to a cycloisomerization/reductive elimination process. [Pg.399]

Palladium-catalyzed cycloisomerization of lactone 276 produced the tricyclic lactone 277 (Scheme 31). The lactone was saponified and the generated acid was decarboxylated to the bicyclic sulfone 278. Oxidation of the primary alcohol to the acid with Jones reagent was followed by esterification yielding 279. Now, the... [Pg.157]

Like the cycloisomerization of propargylamine amides, allylamine amides such as 181 undergo 5-i 3cti-cyclization in NaOH to give phosphine oxide-substituted oxazoles 182 (Equation 11) <2004T8937>. [Pg.518]


See other pages where Oxidative cycloisomerization is mentioned: [Pg.129]    [Pg.252]    [Pg.252]    [Pg.36]    [Pg.323]    [Pg.269]    [Pg.286]    [Pg.129]    [Pg.252]    [Pg.252]    [Pg.36]    [Pg.323]    [Pg.269]    [Pg.286]    [Pg.146]    [Pg.496]    [Pg.249]    [Pg.734]    [Pg.736]    [Pg.163]    [Pg.481]    [Pg.163]    [Pg.31]    [Pg.485]    [Pg.267]    [Pg.461]    [Pg.223]    [Pg.305]    [Pg.21]    [Pg.739]    [Pg.561]    [Pg.1289]   
See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Cycloisomerism

Cycloisomerization

Cycloisomerization gold oxide

Cycloisomerizations

© 2024 chempedia.info