Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of polyacetylenes

Much effort has been expended toward the improvement of the properties of polyacetylenes made by the direct polymerization of acetylene. Variation of the type of initiator systems (17—19), annealing or aging of the catalyst (20,21), and stretch orientation of the films (22,23) has resulted in increases in conductivity and improvement in the oxidative stabiHty of the material. The improvement in properties is likely the result of a polymer with fewer defects. [Pg.35]

Even with improvement in properties of polyacetylenes prepared from acetylene, the materials remained intractable. To avoid this problem, soluble precursor polymer methods for the production of polyacetylene have been developed. The most highly studied system utilizing this method, the Durham technique, is shown in equation 2. [Pg.35]

A drawback to the Durham method for the synthesis of polyacetylene is the necessity of elimination of a relatively large molecule during conversion. This can be overcome by the inclusion of strained rings into the precursor polymer stmcture. This technique was developed in the investigation of the ring-opening metathesis polymerization (ROMP) of benzvalene as shown in equation 3 (31). [Pg.35]

There are several approaches to the preparation of multicomponent materials, and the method utilized depends largely on the nature of the conductor used. In the case of polyacetylene blends, in situ polymerization of acetylene into a polymeric matrix has been a successful technique. A film of the matrix polymer is initially swelled in a solution of a typical Ziegler-Natta type initiator and, after washing, the impregnated swollen matrix is exposed to acetylene gas. Polymerization occurs as acetylene diffuses into the membrane. The composite material is then oxidatively doped to form a conductor. Low density polyethylene (136,137) and polybutadiene (138) have both been used in this manner. [Pg.39]

Whilst the conductivity of these polymers is generally somewhat inferior to that of metals (for example, the electrical conductivity of polyacetylenes has reached more than 400 000 S/cm compared to values for copper of about 600 000 S/cm), when comparisons are made on the basis of equal mass the situation may be reversed. Unfortunately, most of the polymers also display other disadvantages such as improcessability, poor mechanical strength, poor stability under exposure to common environmental conditions, particularly at elevated temperatures, poor storage stability leading to a loss in conductivity and poor stability in the presence of electrolytes. In spite of the involvement of a number of important companies (e.g. Allied, BASF, IBM and Rohm and Haas) commercial development has been slow however, some uses have begun to emerge. It is therefore instructive to review briefly the potential for these materials. [Pg.888]

The ease with which thiophenes are formed in the reaction of acetylenic epoxides " and of polyacetylenes with hydrogen sulfide is of great interest in connection with the biosynthesis of the naturally occurring thiophenes (cf. Section VIH,A) and also of preparative importance. 2-Methyl-l,2-oxido-5-hexene-3-yne (56) in water containing barium hydroxide reacts with HzS at 50°C to give 4-... [Pg.27]

The discovery of junipal focused the attention of Sorensen, who had been investigating the occurrence of polyacetylenes in Com-positae, on the possibility that these acetylenes were accompanied by thiophenes. From Coreopsis grandiflora Hogg ex sweet, 2-phenyl 5-(1-propynyl) thiophene (240) was isolated and its structure confirmed by synthesis of the tetrahydro compound, 2-phenyl-5-n-propyl-thiophene. From the root of tansy, the cis and trans isomers of methyl 5-(l-propynyl)-2-thienylacrylate (241) have been isolated. The total synthesis of trans (241) was achieved by reacting junipal with methylcarbethoxy triphenylphosphonium bromide (Wittig reaction) Several monosubstituted thiophenes, (242), (243), and... [Pg.117]

Polyacetylene is considered to be the prototypical low band-gap polymer, but its potential uses in device applications have been hampered by its sensitivity to both oxygen and moisture in its pristine and doped states. Poly(thienylene vinylene) 2 has been extensively studied because it shares many of the useful attributes of polyacetylene but shows considerably improved environmental stability. The low band gap of PTV and its derivatives lends itself to potential applications in both its pristine and highly conductive doped state. Furthermore, the vinylene spacers between thiophene units allow substitution on the thiophene ring without disrupting the conjugation along the polymer backbone. [Pg.25]

It was also observed that, with the exception of polyacetylene, all important conducting polymers can be electrochemically produced by anodic oxidation moreover, in contrast to chemical methoconducting films are formed directly on the electrode. This stimulated research teams in the field of electrochemistry to study the electrosynthesis of these materials. Most recently, new fields of application, ranging from anti-corrosives through modified electrodes to microelectronic devices, have aroused electrochemists interest in this class of compounds... [Pg.2]

Fig. 7. Cyclic voltammograms for the oxidation of polyacetylene (PA), polypyrrole (PPy) and polyqnaterthienyl (PQTh)... Fig. 7. Cyclic voltammograms for the oxidation of polyacetylene (PA), polypyrrole (PPy) and polyqnaterthienyl (PQTh)...
Another exciting developing field is in material science. Chlorination and bromination of fullerenes (refs. 18,19) and solid state bromination of polyacetylenes (refs. 20,21) and of polybutadienes (ref. 22) are typical examples. [Pg.2]

The SCF method for molecules has been extended into the Crystal Orbital (CO) method for systems with ID- or 3D- translational periodicityiMi). The CO method is in fact the band theory method of solid state theory applied in the spirit of molecular orbital methods. It is used to obtain the band structure as a means to explain the conductivity in these materials, and we have done so in our study of polyacetylene. There are however some difficulties associated with the use of the CO method to describe impurities or defects in polymers. The periodicity assumed in the CO formalism implies that impurities have the same periodicity. Thus the unit cell on which the translational periodicity is applied must be chosen carefully in such a way that the repeating impurities do not interact. In general this requirement implies that the unit cell be very large, a feature which results in extremely demanding computations and thus hinders the use of the CO method for the study of impurities. [Pg.149]

The oxidation and/or reduction reactions yield polymeric systems having an extended Jt-electron system along the chain. Doping to the conducting state, in the instance of polyacetylene by exposnre to iodine vapor (p-doping, oxidizing). [Pg.459]

Polymer Batteries The discovery that doping of polyacetylene produced a highly conducting material was followed swiftly by the realization that this material was a rechargeable battery material which, optimistically, might lead to lightweight... [Pg.461]

Shirakawa, H., The discovery of polyacetylene film the dawning of an era of conducting polymers, Nobel lecture, December 8, 2000. [Pg.464]

Synthesis of polyacetylene from polyvinyl chloride by elimination of HC1. [Pg.445]

Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed. Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed.
Synthesis of polyacetylene from poly(acetylene-co-1,3-butadiene). [Pg.456]

Fig. 1. Possible structures for polyacetylene chains showing the two degenerate trans-structures (a) and (b), and the two non-degenerate cis-structures, (c) cis-transoid and (d) trans-cisoid and (e), a soliton defect at a phase boundary between the two degenerate trans-phases of polyacetylene, where the bond alternation has been reversed. Fig. 1. Possible structures for polyacetylene chains showing the two degenerate trans-structures (a) and (b), and the two non-degenerate cis-structures, (c) cis-transoid and (d) trans-cisoid and (e), a soliton defect at a phase boundary between the two degenerate trans-phases of polyacetylene, where the bond alternation has been reversed.
The most commonly used form of polyacetylene is produced by the Shirakawa method, which involves the direct polymerisation of acetylene gas onto a substrate at... [Pg.15]

Fig. 8. Cyclic voltammograms of polyacetylene films on a platinum surface measured in acetonitrile containing 0.1 M Et4NBF4. Reproduced from [98],... Fig. 8. Cyclic voltammograms of polyacetylene films on a platinum surface measured in acetonitrile containing 0.1 M Et4NBF4. Reproduced from [98],...
Although the conductivity of polyacetylene is generally discussed in terms of solitons, the question of the precise nature of the major charge-carriers continues to be a subject of debate, with conflicting evidence from different experiments. Spectro-electrochemical studies provide evidence that the charge in doped polyacetylene is stored in soliton-like species (although this is not the only possible interpretation [142, 143]), with absorptions in the optical spectra corresponding to transitions to states located at mid-gap [24,89, 119]. The intensity of the interband transitions... [Pg.20]


See other pages where Of polyacetylenes is mentioned: [Pg.242]    [Pg.102]    [Pg.40]    [Pg.4]    [Pg.25]    [Pg.84]    [Pg.130]    [Pg.149]    [Pg.76]    [Pg.444]    [Pg.334]    [Pg.334]    [Pg.385]    [Pg.1]    [Pg.11]    [Pg.11]    [Pg.16]    [Pg.17]    [Pg.17]    [Pg.19]    [Pg.20]    [Pg.21]    [Pg.22]    [Pg.35]    [Pg.267]    [Pg.267]    [Pg.267]   


SEARCH



Analysis of polyacetylene

Chlorination of polyacetylene

Comparison of EHMO and SCF Results on Polyacetylene

Conductivity of polyacetylene

Copolymers of polyacetylene

Derivatives of polyacetylene

Doping of polyacetylene films

ESR Spectra of Pristine and AsFs Doped Polyacetylene (PA)

Electrochemistry of polyacetylene

Electronic Structure of All-Trans Polyacetylene

Functions of Substituted Polyacetylenes

Isomers of polyacetylene

Kinetics of polyacetylene electrodes

Physiological Role of Polyacetylenic Compounds

Polyacetylene

Polyacetylenes

Preparation of polyacetylene

Spin Density Distribution of the Soliton in Pristine Polyacetylene Detected by ENDOR

THE SEMICONDUCTOR DEVICE PHYSICS OF POLYACETYLENE

The Electrochemistry of Polyacetylene

© 2024 chempedia.info